-
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathalgorithms.py
491 lines (444 loc) · 22.3 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import heapq
import math
import random
import sys
from utils.ga_utils import crossover, mutation
def random_search(domain, fitness_function, seed=random.randint(10, 100), seed_init=True, init=[], epochs=100):
""" Random search algorithm implemented
Args:
domain (list): List containing the upper and lower bound.i.e domain of our inputs
fitness_function (function): This parameter accepts a fitness function of given optimization problem.
seed (int,optional): Set the seed value of the random seed generator. Defaults to random integer value.
seed_init(bool,optional): True set's the seed of only population init generator, False sets all generators
init (list, optional): List for initializing the initial solution. Defaults to [].
epochs (int, optional): Number of times the algorithm runs. Defaults to 100.
Returns:
list: List containing the best_solution,
int: The final cost after running the algorithm,
list: List containing all costs during all epochs.
int: The number of function evaluations(NFE) after running the algorithm
int: Seed value used by random generators.
"""
if seed_init:
# Set the seed for initial population only
r_init = random.Random(seed)
else:
# Same seeds for both init and other random generators
r_init = random.Random(seed)
random.seed(seed)
best_cost = sys.maxsize
scores = []
nfe = 0
if len(init) > 0:
solution = init
else:
solution = [r_init.randint(domain[i][0], domain[i][1])
for i in range(len(domain))]
for i in range(epochs):
if i != 0:
solution = [random.randint(domain[i][0], domain[i][1])
for i in range(len(domain))]
if not fitness_function.__name__ == 'fitness_function':
cost = fitness_function(solution)
else:
cost = fitness_function(solution, 'FCO')
nfe += 1
if cost < best_cost:
best_cost = cost
best_solution = solution
scores.append(best_cost)
return best_solution, best_cost, scores, nfe, seed
def hill_climb(domain, fitness_function, seed=random.randint(10, 100), seed_init=True, init=[], epochs=100):
""" Simple Hill Climbing algorithm implemented
Args:
domain (list): List containing the upper and lower bound.i.e domain of our inputs
fitness_function (function): This parameter accepts a fitness function of given optimization problem.
seed (int,optional): Set the seed value of the random seed generator. Defaults to random integer value.
seed_init(bool,optional): True set's the seed of only population init generator, False sets all generators
init (list, optional): List for initializing the initial solution. Defaults to [].
epochs (int, optional): Number of times the algorithm runs. Defaults to 100.
Returns:
list: List containing the best_solution,
int: The final cost after running the algorithm,
list: List containing all costs during all epochs.
int: The number of function evaluations(NFE) after running the algorithm
int: Seed value used by random generators.
"""
if seed_init:
# Set the seed for initial population only
r_init = random.Random(seed)
else:
# Same seeds for both init and other random generators
r_init = random.Random(seed)
random.seed(seed)
count = 0
scores = []
nfe = 0
if len(init) > 0:
solution = init
else:
solution = [r_init.randint(domain[i][0], domain[i][1])
for i in range(len(domain))]
while True:
neighbors = []
for i in range(len(domain)):
if solution[i] > domain[i][0]:
if solution[i] != domain[i][1]: # cannot change value of 9 to 10
neighbors.append(
solution[0:i] + [solution[i] + 1] + solution[i + 1:])
if solution[i] < domain[i][1]:
if solution[i] != domain[i][0]:
neighbors.append(
solution[0:i] + [solution[i] - 1] + solution[i + 1:])
# actual = fitness_function(solution, 'FCO')
if not fitness_function.__name__ == 'fitness_function':
actual = fitness_function(solution)
else:
actual = fitness_function(solution, 'FCO')
nfe += 1
best = actual
for i in range(len(neighbors)):
count += 1
# cost = fitness_function(neighbors[i], 'FCO')
if not fitness_function.__name__ == 'fitness_function':
cost = fitness_function(neighbors[i])
else:
cost = fitness_function(neighbors[i], 'FCO')
nfe += 1
if cost < best:
best = cost
solution = neighbors[i]
scores.append(best)
if best == actual:
print('Count: ', count)
# print('NFE: ',nfe)
break
return solution, best, scores, nfe, seed
def simulated_annealing(domain, fitness_function, seed=random.randint(10, 100), seed_init=True, init=[],
temperature=50000.0, cooling=0.95, step=1):
""" Simulated annealing algorithm implemented with temeperature and cooling parameters.
Args:
domain (list): List containing the upper and lower bound.i.e domain of our inputs
fitness_function (function): This parameter accepts a fitness function of given optimization problem.
init (list, optional): List for initializing the initial solution. Defaults to [].
seed (int,optional): Set the seed value of the random seed generator. Defaults to random integer value.
seed_init(bool,optional): True set's the seed of only population init generator, False sets all generators
epochs (int, optional): Number of times the algorithm runs. Defaults to 100.
temperature (float, optional): This parameter controls the degree of randomness.Increasing it increases the search space. Defaults to 50000.0.
cooling (float, optional): The margin by which temperature decreases at each epoch. Defaults to 0.95.
step (int, optional): Number of steps to the right or left to make changes in given solution. Defaults to 1.
Returns:
list: List containing the best_solution,
int: The final cost after running the algorithm,
list: List containing all costs during all epochs.
int: The number of function evaluations(NFE) after running the algorithm
int: Seed value used by random generators.
"""
if seed_init:
# Set the seed for initial population only
r_init = random.Random(seed)
else:
# Same seeds for both init and other random generators
r_init = random.Random(seed)
random.seed(seed)
count = 0
nfe = 0
scores = []
simulated_annealing.temp = []
if len(init) > 0:
solution = init
else:
solution = [r_init.randint(domain[i][0], domain[i][1])
for i in range(len(domain))]
while temperature > 0.1:
i = random.randint(0, len(domain) - 1)
direction = random.randint(-step, step)
temp_solution = solution[:]
temp_solution[i] += direction
if temp_solution[i] < domain[i][0]:
temp_solution[i] = domain[i][0]
elif temp_solution[i] > domain[i][1]:
temp_solution[i] = domain[i][1]
count += 1
# cost = fitness_function(solution, 'FCO')
if not fitness_function.__name__ == 'fitness_function':
cost = fitness_function(solution)
else:
cost = fitness_function(solution, 'FCO')
nfe += 1
# cost_temp = fitness_function(temp_solution, 'FCO')
if not fitness_function.__name__ == 'fitness_function':
cost_temp = fitness_function(solution)
else:
cost_temp = fitness_function(solution, 'FCO')
nfe += 1
try:
prob = pow(math.e, (-cost_temp - cost) / temperature)
except OverflowError:
prob = float('inf')
best = cost
if (cost_temp < cost or random.random() < prob):
best = cost_temp
solution = temp_solution
scores.append(best)
simulated_annealing.temp.append(temperature)
temperature = temperature * cooling
print('Count: ', count)
return solution, best, scores, nfe, seed
def genetic_algorithm(domain, fitness_function, seed=random.randint(10, 100), seed_init=True, init=[],
population_size=100, step=1,
probability_mutation=0.2, elitism=0.2,
number_generations=500, search=False):
""" Genetic algorithm implemented with elitisim.
Args:
domain (list): List containing the upper and lower bound.i.e domain of our inputs
fitness_function (function): This parameter accepts a fitness function of given optimization problem.
init (list, optional): List for initializing the initial solution. Defaults to [].
seed (int,optional): Set the seed value of the random seed generator. Defaults to random integer value.
seed_init(bool,optional): True set's the seed of only population init generator, False sets all generators
population_size (int, optional): The maximum size of the population to generate. Defaults to 100.
probability_mutation (float, optional): Controls the rate of mutation of genes. Defaults to 0.2.
elitism (float, optional): The percentage of population which proceeds onto next iter without changes. Defaults to 0.2.
number_generations (int, optional): Analgous to epochs, but in this context refers to number of generations the algorithm evolves to . Defaults to 500.
search (bool, optional): If True solution is initialized as the result of a RandomSearch . Defaults to False.
step (int, optional): Number of steps to the right or left to make changes in given solution. Defaults to 1.
Returns:
list: List containing the best_solution,
int: The final cost after running the algorithm,
list: List containing all costs during all epochs.
int: The number of function evaluations(NFE) after running the algorithm
int: Seed value used by random generators.
"""
if seed_init:
# Set the seed for initial population only
r_init = random.Random(seed)
else:
# Same seeds for both init and other random generators
r_init = random.Random(seed)
random.seed(seed)
population = []
scores = []
nfe = 0
for i in range(population_size):
if search == True:
solution, b_c, sc, r_nfe, s = random_search(
domain, fitness_function, seed)
nfe += r_nfe
if len(init) > 0:
solution = init
else:
solution = [r_init.randint(domain[i][0], domain[i][1])
for i in range(len(domain))]
population.append(solution)
number_elitism = int(elitism * population_size)
for i in range(number_generations):
if not fitness_function.__name__ == 'fitness_function':
costs = [(fitness_function(individual), individual)
for individual in population]
else:
costs = [(fitness_function(individual, 'FCO'), individual)
for individual in population]
# costs = [(fitness_function(individual, 'FCO'), individual)
# for individual in population]
nfe += 1
# costs.sort()
heapq.heapify(costs)
ordered_individuals = [individual for (cost, individual) in costs]
population = ordered_individuals[0:number_elitism]
if not fitness_function.__name__ == 'fitness_function':
scores.append(fitness_function(population[0]))
else:
scores.append(fitness_function(population[0], 'FCO'))
# scores.append(fitness_function(population[0], 'FCO'))
nfe += 1
while len(population) < population_size:
if random.random() < probability_mutation:
m = random.randint(0, number_elitism)
population.append(
mutation(domain, step, ordered_individuals[m]))
else:
i1 = random.randint(0, number_elitism)
i2 = random.randint(0, number_elitism)
population.append(
crossover(domain, ordered_individuals[i1], ordered_individuals[i2]))
return costs[0][1], costs[0][0], scores, nfe, seed
def genetic_algorithm_reversed(domain, fitness_function, seed=random.randint(10, 100), seed_init=True, init=[],
population_size=100, step=1,
probability_crossover=0.2, elitism=0.2,
number_generations=500, search=False):
""" Genetic algorithm implemented with elitisim.
Args:
domain (list): List containing the upper and lower bound.i.e domain of our inputs
fitness_function (function): This parameter accepts a fitness function of given optimization problem.
init (list, optional): List for initializing the initial solution. Defaults to [].
seed (int,optional): Set the seed value of the random seed generator. Defaults to random integer value.
seed_init(bool,optional): True set's the seed of only population init generator, False sets all generators
population_size (int, optional): The maximum size of the population to generate. Defaults to 100.
probability_crossover (float, optional): Controls the rate of crossover of genes. Defaults to 0.2.
elitism (float, optional): The percentage of population which proceeds onto next iter without changes. Defaults to 0.2.
number_generations (int, optional): Analgous to epochs, but in this context refers to number of generations the algorithm evolves to . Defaults to 500.
search (bool, optional): If True solution is initialized as the result of a RandomSearch . Defaults to False.
step (int, optional): Number of steps to the right or left to make changes in given solution. Defaults to 1.
Returns:
list: List containing the best_solution,
int: The final cost after running the algorithm,
list: List containing all costs during all epochs.
int: The number of function evaluations(NFE) after running the algorithm
int: Seed value used by random generators.
"""
if seed_init:
# Set the seed for initial population only
r_init = random.Random(seed)
else:
# Same seeds for both init and other random generators
r_init = random.Random(seed)
random.seed(seed)
population = []
scores = []
nfe = 0
for i in range(population_size):
if search == True:
solution, b_c, sc, r_nfe, s = random_search(
domain, fitness_function, seed)
nfe += r_nfe
if len(init) > 0:
solution = init
else:
solution = [r_init.randint(domain[i][0], domain[i][1])
for i in range(len(domain))]
population.append(solution)
number_elitism = int(elitism * population_size)
for i in range(number_generations):
if not fitness_function.__name__ == 'fitness_function':
costs = [(fitness_function(individual), individual)
for individual in population]
else:
costs = [(fitness_function(individual, 'FCO'), individual)
for individual in population]
nfe += 1
# costs.sort()
heapq.heapify(costs)
ordered_individuals = [individual for (cost, individual) in costs]
population = ordered_individuals[0:number_elitism]
if not fitness_function.__name__ == 'fitness_function':
scores.append(fitness_function(population[0]))
else:
scores.append(fitness_function(population[0], 'FCO'))
# scores.append(fitness_function(population[0], 'FCO'))
nfe += 1
while len(population) < population_size:
if random.random() < probability_crossover:
i1 = random.randint(0, number_elitism)
i2 = random.randint(0, number_elitism)
population.append(
crossover(domain, ordered_individuals[i1], ordered_individuals[i2]))
else:
m = random.randint(0, number_elitism)
population.append(
mutation(domain, step, ordered_individuals[m]))
return costs[0][1], costs[0][0], scores, nfe, seed
def genetic_algorithm_with_reversals(domain, fitness_function, seed=random.randint(10, 100), seed_init=True, init=[],
population_size=100, step=1,
probability_mutation=0.2, elitism=0.2, n_k=250, step_length=100,
number_generations=500, search=False):
""" Genetic algorithm implemented with elitisim with n number of reversals.
No. of reversals= number_generations/n_keach of n iter=step_length i.e n step reversal.
Args:
domain (list): List containing the upper and lower bound.i.e domain of our inputs
fitness_function (function): This parameter accepts a fitness function of given optimization problem.
init (list, optional): List for initializing the initial solution. Defaults to [].
seed (int,optional): Set the seed value of the random seed generator. Defaults to random integer value.
seed_init(bool,optional): True set's the seed of only population init generator, False sets all generators
population_size (int, optional): The maximum size of the population to generate. Defaults to 100.
probability_mutation (float, optional): Controls the rate of mutation of genes. Defaults to 0.2.
elitism (float, optional): The percentage of population which proceeds onto next iter without changes. Defaults to 0.2.
number_generations (int, optional): Analgous to epochs, but in this context refers to number of generations the algorithm evolves to . Defaults to 500.
n_k (int, optional): Divides number of generations to get actual no of reversals. Defaults to 50.
step_length (int,optional): The number of reversal steps in a given reversal. Defaults to 120.
search (bool, optional): If True solution is initialized as the result of a RandomSearch . Defaults to False.
step (int, optional): Number of steps to the right or left to make changes in given solution. Defaults to 1.
Returns:
list: List containing the best_solution,
int: The final cost after running the algorithm,
list: List containing all costs during all epochs.
int: The number of function evaluations(NFE) after running the algorithm
int: Seed value used by random generators.
"""
if seed_init:
# Set the seed for initial population only
r_init = random.Random(seed)
else:
# Same seeds for both init and other random generators
r_init = random.Random(seed)
random.seed(seed)
population = []
scores = []
nfe = 0
rev = 0
for i in range(population_size):
if search == True:
solution, b_c, sc, r_nfe, s = random_search(
domain, fitness_function, seed)
nfe += r_nfe
if len(init) > 0:
solution = init
else:
solution = [r_init.randint(domain[i][0], domain[i][1])
for i in range(len(domain))]
population.append(solution)
number_elitism = int(elitism * population_size)
for i in range(number_generations):
if not fitness_function.__name__ == 'fitness_function':
costs = [(fitness_function(individual), individual)
for individual in population]
else:
costs = [(fitness_function(individual, 'FCO'), individual)
for individual in population]
nfe += 1
if i % n_k == 0 and i != 0:
if step_length == 1:
costs.sort(reverse=True)
rev += 1
else:
rev += 1
for _ in range(step_length - 1):
costs.sort(reverse=True)
ordered_individuals = [
individual for (cost, individual) in costs]
population = ordered_individuals[0:number_elitism]
if not fitness_function.__name__ == 'fitness_function':
scores.append(fitness_function(population[0]))
else:
scores.append(fitness_function(population[0], 'FCO'))
nfe += 1
while len(population) < population_size:
if random.random() < probability_mutation:
i1 = random.randint(0, number_elitism)
i2 = random.randint(0, number_elitism)
population.append(
crossover(domain, ordered_individuals[i1], ordered_individuals[i2]))
else:
m = random.randint(0, number_elitism)
population.append(
mutation(domain, step, ordered_individuals[m]))
print(rev) # To print the number of reversals
else:
heapq.heapify(costs)
ordered_individuals = [individual for (cost, individual) in costs]
population = ordered_individuals[0:number_elitism]
if not fitness_function.__name__ == 'fitness_function':
scores.append(fitness_function(population[0]))
else:
scores.append(fitness_function(population[0], 'FCO'))
nfe += 1
while len(population) < population_size:
if random.random() < probability_mutation:
i1 = random.randint(0, number_elitism)
i2 = random.randint(0, number_elitism)
population.append(
crossover(domain, ordered_individuals[i1], ordered_individuals[i2]))
else:
m = random.randint(0, number_elitism)
population.append(
mutation(domain, step, ordered_individuals[m]))
return costs[0][1], costs[0][0], scores, nfe, seed