-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathonnx_edit.py
197 lines (173 loc) · 9 KB
/
onnx_edit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# ------------------------------------------------
# ONNX Model Editor and Graph Extractor
# License under The MIT License
# Written by Saurabh Shandilya
# -----------------------------------------------
import onnx
from onnx import helper, checker
from onnx import TensorProto
import re
import argparse
def createGraphMemberMap(graph_member_list):
member_map=dict();
for n in graph_member_list:
member_map[n.name]=n;
return member_map
def split_io_list(io_list,new_names_all):
#splits input/output list to identify removed, retained and totally new nodes
removed_names=[]
retained_names=[]
for n in io_list:
if n.name not in new_names_all:
removed_names.append(n.name)
if n.name in new_names_all:
retained_names.append(n.name)
new_names=list(set(new_names_all)-set(retained_names))
return [removed_names,retained_names,new_names]
def traceDependentNodes(graph,name,node_input_names,node_map, initializer_map):
# recurisvely traces all dependent nodes for a given output nodes in a graph
for n in graph.node:
for noutput in n.output:
if (noutput == name) and (n.name not in node_input_names):
# give node "name" is node n's output, so add node "n" to node_input_names list
node_input_names.append(n.name)
if n.name in node_map.keys():
for ninput in node_map[n.name].input:
# trace input node's inputs
node_input_names = traceDependentNodes(graph,ninput,node_input_names,node_map, initializer_map)
# don't forget the initializers they can be terminal inputs on a path.
if name in initializer_map.keys():
node_input_names.append(name)
return node_input_names
def onnx_edit(input_model, output_model, new_input_node_names, input_shape_map, new_output_node_names, output_shape_map, verify):
""" edits and modifies an onnx model to extract a subgraph based on input/output node names and shapes.
Arguments:
input_model: path of input onnx model
output_model: path of output onnx model
new_input_node_names: list of input node names including list of original input nodes if they are to be retained.
If the list is empty original input nodes are assumed.
input_shape_map: dictionary/map of input node names to corresponding shapes. Shapes are needed for model checker to pass.
new_output_node_names: list of output node names, including list of original output nodes if they are to be retained
If the list if empty original output nodes are assumed.
output_shape_map: dictionary/map of output node names to corresponding shape. Shapes are needed for model checker to pass.
verify: set to true if input and output models need to be verified.
"""
# LOAD MODEL AND PREP MAPS
model = onnx.load(input_model)
graph = model.graph
print(onnx.checker.check_model(model))
print(verify)
if(verify):
print("input model Errors: ", onnx.checker.check_model(model))
#Generate a name for all node if they have none.
nodeIdx = 0;
for n in graph.node:
if n.name == '':
n.name = str(n.op_type) + str(nodeIdx)
nodeIdx += 1
node_map = createGraphMemberMap(graph.node)
input_map = createGraphMemberMap(graph.input)
output_map = createGraphMemberMap(graph.output)
initializer_map = createGraphMemberMap(graph.initializer)
if not new_input_node_names:
new_input_node_names = list(input_map)
if not new_output_node_names:
new_output_node_names = list(output_map)
# MODIFY INPUTS
# Break the graph based on the new input node names
[removed_names,retained_names,new_names]=split_io_list(graph.input,new_input_node_names)
for name in removed_names:
if name in input_map.keys():
graph.input.remove(input_map[name])
for name in new_names:
# If a new input name corresponds to an existing node, it implies that original node in the graph needs to be replaced with an input node
# Exactly here the graph is broken
if name in node_map.keys():
graph.node.remove(node_map[name])
# Remove node where there output would match new input to avoid duplicate definitions
nodesToRemoveToAvoidDuplicateEntries = []
for n in graph.node:
for noutput in n.output:
if (noutput == name):
nodesToRemoveToAvoidDuplicateEntries.append(n)
for n in nodesToRemoveToAvoidDuplicateEntries:
graph.node.remove(n)
if(name in input_shape_map.keys()):
new_nv = helper.make_tensor_value_info(name, TensorProto.FLOAT, input_shape_map[name])
else:
new_nv = helper.make_tensor_value_info(name, TensorProto.FLOAT, None)
graph.input.extend([new_nv])
node_map = createGraphMemberMap(graph.node)
input_map = createGraphMemberMap(graph.input)
# MODIFY OUTPUTS
# Break the graph based on the new output node names
[removed_names,retained_names,new_names]=split_io_list(graph.output,new_output_node_names)
for name in removed_names:
if name in output_map.keys():
graph.output.remove(output_map[name])
for name in new_names:
if(name in output_shape_map.keys()):
new_nv = helper.make_tensor_value_info(name, TensorProto.FLOAT, output_shape_map[name])
else:
new_nv = helper.make_tensor_value_info(name, TensorProto.FLOAT, None)
graph.output.extend([new_nv])
output_map = createGraphMemberMap(graph.output)
# CLEANUP NODES
# Trace all dependent nodes for the current set of output nodes defined & prepare a list of invalid nodes
valid_node_names=[]
for new_output_node_name in new_output_node_names:
valid_node_names=traceDependentNodes(graph,new_output_node_name,valid_node_names,node_map, initializer_map)
valid_node_names=list(set(valid_node_names))
invalid_node_names = list( (set(node_map.keys()) | set(initializer_map.keys())) - set(valid_node_names))
# Remove all the invalid nodes from the graph
for name in invalid_node_names:
if name in node_map.keys():
graph.node.remove(node_map[name])
if name in initializer_map.keys():
graph.initializer.remove(initializer_map[name])
if name in input_map.keys():
graph.input.remove(input_map[name])
# SAVE MODEL
if(verify):
print("output model Errors: ", onnx.checker.check_model(model))
onnx.save(model, output_model)
def parse_nodename_and_shape(name):
# parses node names and shapes from input argument string
inputs = []
shapes = {}
# input takes in most cases the format name:0, where 0 is the output number, and shapes
# are appended to the same e.g. name:0[1,28,28,3]
name_pattern = r"(?:([\w\d/\-\._:]+)(\[[\-\d,]+\])?),?"
splits = re.split(name_pattern, name)
for i in range(1, len(splits), 3):
inputs.append(splits[i])
if splits[i + 1] is not None:
shapes[splits[i]] = [int(n) for n in splits[i + 1][1:-1].split(",")]
if not shapes:
shapes = None
return inputs, shapes
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("input", help="input onnx model")
parser.add_argument("output", help="output onnx model")
parser.add_argument("--inputs", help="comma separated model input names appended with shapes, e.g. --inputs <nodename>[1,2,3],<nodename1>[1,2,3] ")
parser.add_argument("--outputs", help="comma separated model output names appended with shapes, e.g. --outputs <nodename>[1,2,3],<nodename1>[1,2,3] ")
parser.add_argument('--skipverify', dest='skipverify', action='store_true',
help='skip verification of model. Useful if shapes are not known')
args = parser.parse_args()
if args.inputs:
new_input_node_names, input_shape_map = parse_nodename_and_shape(args.inputs)
#print(new_input_node_names)
#print(input_shape_map)
else:
new_input_node_names = []
input_shape_map = {}
if args.outputs:
new_output_node_names, output_shape_map = parse_nodename_and_shape(args.outputs)
#print(new_output_node_names)
#print(output_shape_map)
else:
new_output_node_names = []
output_shape_map = {}
#onnx_edit(args.input,args.output,new_input_node_names, input_shape_map, new_output_node_names, output_shape_map, not args.skipverify)
onnx_edit(args.input,args.output,new_input_node_names, input_shape_map, new_output_node_names, output_shape_map, args.skipverify)