-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathworker_viscap.py
177 lines (146 loc) · 5.31 KB
/
worker_viscap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from __future__ import absolute_import
import json
import os
import argparse
import torch
import yaml
import pika
import traceback
from viscap.captioning import DetectCaption, build_detection_model, build_caption_model
from viscap.visdialch.data.vocabulary import Vocabulary
from viscap.visdialch.data.demo_manager import DemoSessionManager
from viscap.visdialch.model import EncoderDecoderModel
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'visdial.settings')
import django
django.setup()
from chat.utils import log_to_terminal
from chat.models import Job, Dialog
parser = argparse.ArgumentParser(
"Run Visual-Dialog Demo"
)
parser.add_argument(
"--config-yml",
default="viscap/configs/lf_gen_faster_rcnn_x101_demo.yml",
help="Path to a config file listing reader, visual dialog and captioning "
"model parameters.",
)
parser.add_argument(
"--load-pthpath",
default="viscap/checkpoints/lf_gen_mask_rcnn_x101_train_demo.pth",
help="Path to .pth file of pretrained checkpoint.",
)
parser.add_argument(
"--gpu-ids",
nargs="+",
type=int,
default=-1,
help="List of ids of GPUs to use.",
)
# For reproducibility.
# Refer https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# =============================================================================
# INPUT ARGUMENTS AND CONFIG
# =============================================================================
args = parser.parse_args()
# get abs path
if not os.path.isabs(args.config_yml):
args.config_yml = os.path.abspath(args.config_yml)
# keys: {"dataset", "model", "solver"}
config = yaml.load(open(args.config_yml), Loader=yaml.FullLoader)
if isinstance(args.gpu_ids, int):
args.gpu_ids = [args.gpu_ids]
device = (
torch.device("cuda", args.gpu_ids[0])
if args.gpu_ids[0] >= 0
else torch.device("cpu")
)
# Print config and args.
print(yaml.dump(config, default_flow_style=False))
for arg in vars(args):
print("{:<20}: {}".format(arg, getattr(args, arg)))
# =============================================================================
# BUILD VOCABULARY | LOAD MODELS: ENC-DEC, CAPTIONING
# =============================================================================
dataset_config = config["dataset"]
model_config = config["model"]
captioning_config = config["captioning"]
vocabulary = Vocabulary(
dataset_config["word_counts_json"],
min_count=dataset_config["vocab_min_count"]
)
# Build Encoder-Decoder model and load its checkpoint
enc_dec_model = EncoderDecoderModel(model_config, vocabulary).to(device)
enc_dec_model.load_checkpoint(args.load_pthpath, device)
# Build the detection and captioning model and load their checkpoints
detection_model = build_detection_model(captioning_config, device)
caption_model, caption_processor, text_processor = build_caption_model(
captioning_config,
device
)
# Wrap the detection and caption models together
detect_caption_model = DetectCaption(
detection_model,
caption_model,
caption_processor,
text_processor,
device
)
# Pass the Captioning and Encoder-Decoder models, initialize DemoSessionManager
demo_manager = DemoSessionManager(
detect_caption_model,
enc_dec_model,
vocabulary,
config,
device
)
enc_dec_model.eval()
# =============================================================================
# BUILD VISDIAL-CAPTIONING QUEUE
# =============================================================================
django.db.close_old_connections()
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='visdial_caption_task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
def callback(ch, method, properties, body):
try:
body = yaml.safe_load(body)
if body['type'] == "visdial":
# go for the visdial-run
answer = demo_manager.respond(body['input_question'])
result = {
'answer': answer,
'question': body['input_question']
}
log_to_terminal(body['socketid'], {"result": json.dumps(result)})
ch.basic_ack(delivery_tag=method.delivery_tag)
try:
job = Job.objects.get(id=int(body['job_id']))
Dialog.objects.create(job=job, question=body['input_question'], answer=answer)
except:
print(str(traceback.print_exc()))
else:
# go for the caption-run
demo_manager.set_image(body['image_path'])
caption = demo_manager.get_caption()
result = {
'pred_caption': caption
}
log_to_terminal(body['socketid'], {"result": json.dumps(result)})
ch.basic_ack(delivery_tag=method.delivery_tag)
try:
Job.objects.filter(id=int(body['job_id'])).update(
caption=caption
)
except Exception as e:
print(str(traceback.print_exc()))
django.db.close_old_connections()
except Exception:
print(str(traceback.print_exc()))
channel.basic_consume(callback, queue='visdial_caption_task_queue')
channel.start_consuming()