-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathfinetune_ucf101_slowfast_edlnokl_avuc_debias.py
161 lines (161 loc) · 5.19 KB
/
finetune_ucf101_slowfast_edlnokl_avuc_debias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# model settings
evidence_loss = dict(type='EvidenceLoss',
num_classes=101,
evidence='exp',
loss_type='log',
with_kldiv=False,
with_avuloss=True,
annealing_method='exp')
model = dict(
type='Recognizer3D',
backbone=dict(
type='ResNet3dSlowFast',
pretrained=None,
resample_rate=4, # tau
speed_ratio=4, # alpha
channel_ratio=8, # beta_inv
slow_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
lateral=True,
fusion_kernel=7,
conv1_kernel=(1, 7, 7),
dilations=(1, 1, 1, 1),
conv1_stride_t=1,
pool1_stride_t=1,
inflate=(0, 0, 1, 1),
norm_eval=False),
fast_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
lateral=False,
base_channels=8,
conv1_kernel=(5, 7, 7),
conv1_stride_t=1,
pool1_stride_t=1,
norm_eval=False)),
cls_head=dict(
type='SlowFastHead',
loss_cls=evidence_loss,
in_channels=2304, # 2048+256
num_classes=101,
spatial_type='avg',
dropout_ratio=0.5),
debias_head=dict(
type='DebiasHead',
loss_cls=evidence_loss, # actually not used!
loss_factor=0.1,
num_classes=101,
in_channels=2048, # only slow features are debiased
dropout_ratio=0.5,
init_std=0.01))
train_cfg = None
test_cfg = dict(average_clips='evidence', evidence_type='exp')
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos'
data_root_val = 'data/ucf101/videos'
ann_file_train = 'data/ucf101/ucf101_train_split_1_videos.txt'
ann_file_val = 'data/ucf101/ucf101_val_split_1_videos.txt'
ann_file_test = 'data/ucf101/ucf101_val_split_1_videos.txt'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='OpenCVInit', num_threads=1),
dict(type='SampleFrames', clip_len=32, frame_interval=2, num_clips=1),
dict(type='OpenCVDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='RandomResizedCrop'),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(type='OpenCVInit', num_threads=1),
dict(
type='SampleFrames',
clip_len=32,
frame_interval=2,
num_clips=1,
test_mode=True),
dict(type='OpenCVDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
dict(type='OpenCVInit', num_threads=1),
dict(
type='SampleFrames',
clip_len=32,
frame_interval=2,
num_clips=10,
test_mode=True),
dict(type='OpenCVDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='ThreeCrop', crop_size=256),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
data = dict(
videos_per_gpu=8,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
start_index=0,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
start_index=0,
pipeline=val_pipeline),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=data_root_val,
start_index=0,
pipeline=test_pipeline))
# optimizer
optimizer = dict(
type='SGD', lr=0.001, momentum=0.9,
weight_decay=0.0001, nesterov=True) # this lr is used for 8 gpus
optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2))
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_by_epoch=True,
warmup_iters=5)
total_epochs = 50
checkpoint_config = dict(interval=10)
workflow = [('train', 1)]
evaluation = dict(
interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'])
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook'),
])
annealing_runner = True
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/finetune_ucf101_slowfast_dnn'
load_from = 'https://download.openmmlab.com/mmaction/recognition/slowfast/slowfast_r50_8x8x1_256e_kinetics400_rgb/slowfast_r50_8x8x1_256e_kinetics400_rgb_20200716-73547d2b.pth'
resume_from = None
find_unused_parameters = False