Skip to content

Latest commit

 

History

History
69 lines (55 loc) · 3.64 KB

readme.md

File metadata and controls

69 lines (55 loc) · 3.64 KB

lmdbm

This is a Python DBM interface style wrapper around LMDB (Lightning Memory-Mapped Database). It uses the existing lower level Python bindings py-lmdb. This is especially useful on Windows, where otherwise dbm.dumb is the default dbm database.

Install

  • pip install lmdbm

Example

from lmdbm import Lmdb
with Lmdb.open("test.db", "c") as db:
  db[b"key"] = b"value"
  db.update({b"key1": b"value1", b"key2": b"value2"})  # batch insert, uses a single transaction

Use inheritance to store Python objects using json serialization

import json
from lmdbm import Lmdb

class JsonLmdb(Lmdb):
  def _pre_key(self, value):
    return value.encode("utf-8")
  def _post_key(self, value):
    return value.decode("utf-8")
  def _pre_value(self, value):
    return json.dumps(value).encode("utf-8")
  def _post_value(self, value):
    return json.loads(value.decode("utf-8"))

with JsonLmdb.open("test.db", "c") as db:
  db["key"] = {"some": "object"}
  obj = db["key"]
  print(obj["some"])  # prints "object"

Warning

As of lmdb==1.2.1 the docs say that calling lmdb.Environment.set_mapsize from multiple processes "may cause catastrophic loss of data". If lmdbm is used in write mode from multiple processes, set autogrow=False and map_size to a large enough value: Lmdb.open(..., map_size=2**30, autogrow=False).

Benchmarks

Install lmdbm[bench] and run benchmark.py. Other storage engines which could be tested: wiredtiger, berkeleydb.

Storage engines not benchmarked:

  • tinydb (because it doesn't have built-in str/bytes keys)

continuous writes in seconds (best of 3)

items lmdbm lmdbm-batch pysos sqlitedict sqlitedict-batch dbm.dumb semidbm vedis vedis-batch unqlite unqlite-batch
10 0.000 0.015 0.000 0.031 0.000 0.016 0.000 0.000 0.000 0.000 0.000
100 0.094 0.000 0.000 0.265 0.016 0.188 0.000 0.000 0.000 0.000 0.000
1000 1.684 0.016 0.015 3.885 0.124 2.387 0.016 0.015 0.015 0.016 0.000
10000 16.895 0.093 0.265 45.334 1.326 25.350 0.156 0.093 0.094 0.094 0.093
100000 227.106 1.030 2.698 461.638 12.964 238.400 1.623 1.388 1.467 1.466 1.357
1000000 3482.520 13.104 27.815 5851.239 133.396 2432.945 16.411 15.693 15.709 14.508 14.103

random reads in seconds (best of 3)

items lmdbm lmdbm-batch pysos sqlitedict sqlitedict-batch dbm.dumb semidbm vedis vedis-batch unqlite unqlite-batch
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.031 0.000 0.000 0.000 0.000
1000 0.016 0.015 0.250 0.109 0.016 0.015 0.000
10000 0.109 0.156 2.558 1.123 0.171 0.109 0.109
100000 1.014 2.137 27.769 11.419 2.090 1.170 1.170
1000000 10.390 24.258 447.613 870.580 22.838 214.486 211.319