-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcarabids_02_clean.R
160 lines (129 loc) · 7.93 KB
/
carabids_02_clean.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# This script downloads mostly NEON and one Niwot LTER data product to be used as variables in carabid species distribution modeling.
library(dplyr)
library(neonUtilities)
library(geoNEON)
library(raster)
### Functions ###
# Removes columns with NA
remove_NA_cols <- function(list_of_lists){
for (i in 1:length(list_of_lists))
list_of_lists[[i]] <- list_of_lists[[i]][, colSums(is.na(list_of_lists[[i]])) !=
nrow(list_of_lists[[i]])]
return(list_of_lists)
}
### Load raw data ###
load("data_raw/carabids_NIWO.Rdata")
# load("data_raw/soil_wc_NIWO.Rdata")
# load("data_raw/woody_veg_NIWO.Rdata")
# load("data_raw/litter_woodfall_NIWO.Rdata")
# load("data_raw/ir_bio_temp_NIWO.Rdata")
# #load("data_raw/soil_temp_NIWO.Rdata")
# load("data_raw/precip_NIWO.Rdata")
# load("data_raw/rad_net_NIWO.Rdata")
# load("data_raw/rad_short_dir_diff_NIWO.Rdata")
# forest_niwot_all = read.csv("data_raw/PP_plot_data_1982-2016.tv.data.csv") #just the plot info
load("data_raw/ir_bio_temp_NIWO.Rdata")
load("data_raw/summ_weath_NIWO.Rdata")
load("data_raw/air_temp_NIWO.Rdata")
#load("data_raw/soil_temp_NIWO.Rdata")
load("data_raw/precip_NIWO.Rdata")
load("data_raw/precip_NIWO_LTER_saddle.Rdata")
load("data_raw/precip_NIWO_LTER_C1.Rdata")
load("data_raw/rad_net_NIWO.Rdata")
load("data_raw/rad_short_dir_diff_NIWO.Rdata")
forest_niwot_all = read.csv("data_raw/PP_plot_data_1982-2016.tv.data.csv") #just the plot info
### Clean data ###
# Remove columns with NAs from every data package
all_data_packages <- c(carabid_abund, carabid_barcode, woody_veg, litter_woodfall,
ir_bio_temp, precip, rad_net, rad_short_dir_diff) #soil_temp, soil_wc
# all_data_packages <- c(air_temp) #cleaning missing packages
for (i in 1:length(all_data_packages)) {
all_data_packages[i] <- remove_NA_cols(all_data_packages[i])
}
### Extract spatial data ###
# carabid abundance
carabid_spat <- def.extr.geo.os(data = carabid_abund$bet_fielddata, 'namedLocation', locOnly=T) %>%
dplyr::select(api.decimalLatitude, api.decimalLongitude, Value.for.Plot.ID) %>%
cbind('data_type' = rep('carabid'))
# # soil water content
# soil_water_spat = def.extr.geo.os(data = soil_wc$vst_perplotperyear,'namedLocation', locOnly=T) %>%
# dplyr::select(api.decimalLatitude, api.decimalLongitude) %>%
# cbind('data_type' = rep('soil_water'))
# woody veg
woody_spat = def.extr.geo.os(data = woody_veg$vst_perplotperyear, 'namedLocation', locOnly=T) %>%
dplyr::select(api.decimalLatitude, api.decimalLongitude, Value.for.Plot.ID) %>%
cbind('data_type' = rep('woody_veg'))
# litter and woodfall
litter_spat = def.extr.geo.os(data = litter_woodfall$ltr_pertrap, 'namedLocation', locOnly=T) %>%
dplyr::select(api.decimalLatitude, api.decimalLongitude, Value.for.Plot.ID) %>%
cbind('data_type' = rep('litter'))
# infrared biological temp
ir_bio_temp_spat = ir_bio_temp$sensor_positions_00005 %>%
dplyr::select(referenceLatitude, referenceLongitude) %>%
cbind('Value.for.Plot.ID' = NA, 'data_type' = rep('ir_bio_temp')) %>% #site-level, not plot-level
rename('api.decimalLatitude' = referenceLatitude,'api.decimalLongitude' = referenceLongitude)
# # soil temperature
# soil_temp_spat = soil_temp$sensor_positions_00041 %>%
# dplyr::select(referenceLatitude, referenceLongitude) %>%
# cbind('data_type' = rep('soil_temp')) %>%
# rename('api.decimalLatitude' = referenceLatitude,'api.decimalLongitude' = referenceLongitude)
# NEON precipitation
precip_spat <- precip$sensor_positions_00006 %>%
dplyr::select(referenceLatitude, referenceLongitude) %>%
cbind('Value.for.Plot.ID' = NA, 'data_type' = rep('precip')) %>% #site-level, not plot-level
rename('api.decimalLatitude' = referenceLatitude,'api.decimalLongitude' = referenceLongitude)
# NIWO LTER precipitation - see download script for data/code source
for (i in 1:2) {
if (i == 1) {precip_obj <- precip_LTER_C1} else {precip_obj <- precip_LTER_saddle}
if (class(precip_obj$LTER_site)!="factor") precip_obj$LTER_site<- as.factor(precip_obj$LTER_site)
if (class(precip_obj$local_site)!="factor") precip_obj$local_site<- as.factor(precip_obj$local_site)
tmpDateFormat<-"%Y-%m-%d"
tmp1date<-as.Date(precip_obj$date,format=tmpDateFormat)
if(length(tmp1date) == length(tmp1date[!is.na(tmp1date)])){precip_obj$date <- tmp1date } else {print("Date conversion failed for precip_obj$date. Please inspect the data and do the date conversion yourself.")}
rm(tmpDateFormat,tmp1date)
if (class(precip_obj$ppt_tot)=="factor") precip_obj$ppt_tot <-as.numeric(levels(precip_obj$ppt_tot))[as.integer(precip_obj$ppt_tot) ]
if (class(precip_obj$qdays)=="factor") precip_obj$qdays <-as.numeric(levels(precip_obj$qdays))[as.integer(precip_obj$qdays) ]
if (class(precip_obj$flag_ppt_tot)!="factor") precip_obj$flag_ppt_tot<- as.factor(precip_obj$flag_ppt_tot)
precip_obj$LTER_site <- as.factor(ifelse((trimws(as.character(precip_obj$LTER_site))==trimws("NaN")),NA,as.character(precip_obj$LTER_site)))
precip_obj$local_site <- as.factor(ifelse((trimws(as.character(precip_obj$local_site))==trimws("NaN")),NA,as.character(precip_obj$local_site)))
precip_obj$ppt_tot <- ifelse((trimws(as.character(precip_obj$ppt_tot))==trimws("NaN")),NA,precip_obj$ppt_tot)
precip_obj$qdays <- ifelse((trimws(as.character(precip_obj$qdays))==trimws("NaN")),NA,precip_obj$qdays)
precip_obj$flag_ppt_tot <- as.factor(ifelse((trimws(as.character(precip_obj$flag_ppt_tot))==trimws("NaN")),NA,as.character(precip_obj$flag_ppt_tot)))
precip_obj <- subset(precip_obj, date >= "2015-01-01") # Keep data since 2015
if (i == 1) {precip_LTER_C1 <- precip_obj} else {precip_LTER_saddle <- precip_obj}
}
# Merge Niwot LTER precip products
merged_precip <- full_join(precip_LTER_C1 %>% select(-c(qdays,flag_ppt_tot)),
precip_LTER_saddle %>% select(-c(qdays,flag_ppt_tot)) )
# net radiation (shortwave and longwave)
rad_net_spat <- rad_net$sensor_positions_00006 %>%
dplyr::select(referenceLatitude, referenceLongitude) %>%
cbind('Value.for.Plot.ID' = NA, 'data_type' = rep('rad_net')) %>% #site-level, not plot-level
rename('api.decimalLatitude' = referenceLatitude,'api.decimalLongitude' = referenceLongitude)
# shortwave radiation - diffuse and direct
rad_short_dir_diff_spat <- rad_short_dir_diff$sensor_positions_00023 %>%
dplyr::select(referenceLatitude, referenceLongitude) %>%
cbind('Value.for.Plot.ID' = NA, 'data_type' = rep('rad_short_dir_diff')) %>% #site-level, not plot-level
rename('api.decimalLatitude' = referenceLatitude,'api.decimalLongitude' = referenceLongitude)
# niwot lter forest plots
forest_niwot_spat = data.frame('api.decimalLatitude' = forest_niwot_all$lat,
'api.decimalLongitude' = forest_niwot_all$long,
'Value.for.Plot.ID' = NA, #not a NEON data product
'data_type' = rep('forest_niwot')) #uses same naming as
# Join spatial data (lat/long)
all_spat <- rbind(carabid_spat, woody_spat, litter_spat, ir_bio_temp_spat,
precip_spat, rad_net_spat, rad_short_dir_diff_spat, forest_niwot_spat) #soil_water_spat, soil_temp_spat
write.csv(x = all_spat, file = "data_derived/all_pts_spat.csv", row.names = FALSE)
### Save cleaned data do data_derived ###
save(carabid_abund, carabid_barcode, file="data_derived/carabids_NIWO.Rdata")
#save(soil_wc, file="data_derived/soil_wc_NIWO.Rdata")
save(woody_veg, file="data_derived/woody_veg_NIWO.Rdata")
save(litter_woodfall, file="data_derived/litter_woodfall_NIWO.Rdata")
save(ir_bio_temp, file="data_derived/ir_bio_temp_NIWO.Rdata")
#save(soil_temp, file="data_derived/soil_temp_NIWO.Rdata")
save(precip, file="data_derived/precip_NIWO.Rdata")
save(merged_precip, file="data_derived/merged_C1-saddle_precip.Rdata")
save(rad_net, file="data_derived/rad_net_NIWO.Rdata")
save(rad_short_dir_diff, file="data_derived/rad_short_dir_diff_NIWO.Rdata")
save(summ_weath, file="data_derived/summ_weath_NIWO.Rdata")
save(air_temp, file = "data_derived/air_temp_NIWO.Rdata")