forked from lopuhin/kaggle-dstl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_submission.py
executable file
·293 lines (262 loc) · 11.5 KB
/
make_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/usr/bin/env python3
import argparse
import csv
import json
import gzip
from functools import partial
from pathlib import Path
from multiprocessing.pool import Pool
import traceback
from typing import List, Tuple, Set
import cv2
import numpy as np
import shapely.affinity
from shapely.geometry import MultiPolygon
import shapely.wkt
import utils
from train import Model, HyperParams, Image
logger = utils.get_logger(__name__)
def main():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg('logdir', type=Path, help='Path to log directory')
arg('output', type=str, help='Submission csv')
arg('--only', help='Only predict these image ids (comma-separated)')
arg('--threshold', type=float, default=0.5)
arg('--epsilon', type=float, default=2.0, help='smoothing')
arg('--min-area', type=float, default=50.0)
arg('--min-small-area', type=float, default=10.0)
arg('--masks-only', action='store_true', help='Do only mask prediction')
arg('--model-path', type=Path,
help='Path to a specific model (if the last is not desired)')
arg('--processes', type=int, default=30)
arg('--validation', choices=['square', 'custom'],
help='only validation images, check jaccard, '
'save masks and polygons as png')
arg('--valid-polygons', action='store_true', help='validation via polygons')
arg('--fix', nargs='+', help='{im_id}_{poly_type} format, e.g 6100_1_1_10')
arg('--force-predict', action='store_true')
arg('--no-edges', action='store_true', help='disable prediction on edges')
arg('--buffer', type=float, help='do .buffer(x) on pred polygons')
args = parser.parse_args()
to_fix = set(args.fix or [])
hps = HyperParams(**json.loads(
args.logdir.joinpath('hps.json').read_text()))
only = set(args.only.split(',')) if args.only else set()
with open('sample_submission.csv') as f:
reader = csv.reader(f)
header = next(reader)
image_ids = [im_id for im_id, cls, _ in reader if cls == '1']
store = args.logdir # type: Path
train_ids = set(utils.get_wkt_data())
if only:
to_predict = only
elif args.validation:
if args.validation == 'custom':
to_predict = [
'6140_3_1', '6110_1_2', '6160_2_1', '6170_0_4', '6100_2_2']
else:
to_predict = set(train_ids)
else:
to_predict = set(image_ids) | set(train_ids)
if not args.force_predict:
to_predict_masks = [
im_id for im_id in to_predict
if not mask_path(store, im_id).exists()]
else:
to_predict_masks = to_predict
if to_predict_masks:
predict_masks(args, hps, store, to_predict_masks, args.threshold,
validation=args.validation, no_edges=args.no_edges)
if args.masks_only:
logger.info('Was building masks only, done.')
return
logger.info('Building polygons')
opener = gzip.open if args.output.endswith('.gz') else open
with opener(args.output, 'wt') as f:
writer = csv.writer(f)
writer.writerow(header)
to_output = to_predict if args.validation else (only or image_ids)
jaccard_stats = [[] for _ in hps.classes]
sizes = [0 for _ in hps.classes]
with Pool(processes=args.processes) as pool:
for rows, js in pool.imap(
partial(get_poly_data,
store=store,
classes=hps.classes,
epsilon=args.epsilon,
min_area=args.min_area,
min_small_area=args.min_small_area,
validation=args.validation,
to_fix=to_fix,
hps=hps,
valid_polygons=args.valid_polygons,
buffer=args.buffer,
),
to_output):
assert len(rows) == hps.n_classes
writer.writerows(rows)
for cls_jss, cls_js in zip(jaccard_stats, js):
cls_jss.append(cls_js)
for idx, (_, _, poly) in enumerate(rows):
sizes[idx] += len(poly)
if args.validation:
pixel_jaccards, poly_jaccards = [], []
for cls, cls_js in zip(hps.classes, jaccard_stats):
pixel_jc, poly_jc = [np.array([0, 0, 0], dtype=np.float32)
for _ in range(2)]
for _pixel_jc, _poly_jc in cls_js:
pixel_jc += _pixel_jc
poly_jc += _poly_jc
logger.info(
'cls-{}: pixel jaccard: {:.5f}, polygon jaccard: {:.5f}'
.format(cls, jaccard(pixel_jc), jaccard(poly_jc)))
pixel_jaccards.append(jaccard(pixel_jc))
poly_jaccards.append(jaccard(poly_jc))
logger.info(
'Mean pixel jaccard: {:.5f}, polygon jaccard: {:.5f}'
.format(np.mean(pixel_jaccards), np.mean(poly_jaccards)))
for cls, size in zip(hps.classes, sizes):
logger.info('cls-{} size: {:,} bytes'.format(cls, size))
def mask_path(store: Path, im_id: str) -> Path:
return store.joinpath('{}.bin-mask.gz'.format(im_id))
def predict_masks(args, hps, store, to_predict: List[str], threshold: float,
validation: str=None, no_edges: bool=False):
logger.info('Predicting {} masks: {}'
.format(len(to_predict), ', '.join(sorted(to_predict))))
model = Model(hps=hps)
if args.model_path:
model.restore_snapshot(args.model_path)
else:
model.restore_last_snapshot(args.logdir)
def load_im(im_id):
data = model.preprocess_image(utils.load_image(im_id))
if hps.n_channels != data.shape[0]:
data = data[:hps.n_channels]
if validation == 'square':
data = square(data, hps)
return Image(id=im_id, data=data)
def predict_mask(im):
logger.info(im.id)
return im, model.predict_image_mask(im.data, no_edges=no_edges)
im_masks = map(predict_mask, utils.imap_fixed_output_buffer(
load_im, sorted(to_predict), threads=2))
for im, mask in utils.imap_fixed_output_buffer(
lambda _: next(im_masks), to_predict, threads=1):
assert mask.shape[1:] == im.data.shape[1:]
with gzip.open(str(mask_path(store, im.id)), 'wb') as f:
# TODO - maybe do (mask * 20).astype(np.uint8)
np.save(f, mask >= threshold)
def get_poly_data(im_id, *,
store: Path,
classes: List[int],
epsilon: float,
min_area: float,
min_small_area: float,
validation: str,
to_fix: Set[str],
hps: HyperParams,
valid_polygons: bool,
buffer: float
):
train_polygons = utils.get_wkt_data().get(im_id)
jaccard_stats = []
path = mask_path(store, im_id)
if path.exists():
logger.info(im_id)
with gzip.open(str(path), 'rb') as f:
try:
masks = np.load(f) # type: np.ndarray
except Exception:
logger.error('Error loading mask {}'.format(path))
raise
if validation == 'square':
masks = square(masks, hps)
rows = []
if validation:
im_data = utils.load_image(im_id, rgb_only=True)
im_size = im_data.shape[:2]
if validation == 'square':
im_data = square(im_data, hps)
cv2.imwrite(str(store / '{}_image.png'.format(im_id)),
255 * utils.scale_percentile(im_data))
for cls, mask in zip(classes, masks):
poly_type = cls + 1
if train_polygons and not validation:
rows.append((im_id, str(poly_type), 'MULTIPOLYGON EMPTY'))
else:
unscaled, pred_poly = get_polygons(
im_id, mask, epsilon,
min_area=min_small_area if cls in {1, 8, 9} else min_area,
fix='{}_{}'.format(im_id, poly_type) in to_fix,
buffer=buffer,
)
rows.append(
(im_id, str(poly_type),
shapely.wkt.dumps(pred_poly, rounding_precision=8)))
if validation:
poly_mask = utils.mask_for_polygons(mask.shape, unscaled)
train_poly = shapely.wkt.loads(train_polygons[poly_type])
scaled_train_poly = utils.scale_to_mask(
im_id, im_size, train_poly)
true_mask = utils.mask_for_polygons(
im_size, scaled_train_poly)
if validation == 'square':
true_mask = square(true_mask, hps)
write_mask = lambda m, name: cv2.imwrite(
str(store / '{}_{}_{}.png'.format(im_id, cls, name)),
255 * m)
write_mask(true_mask, 'true_mask')
write_mask(mask, 'pixel_mask')
write_mask(poly_mask, 'poly_mask')
jaccard_stats.append(
log_jaccard(im_id, cls, true_mask, mask, poly_mask,
scaled_train_poly, unscaled,
valid_polygons=valid_polygons))
else:
logger.info('{} empty'.format(im_id))
rows = [(im_id, str(cls + 1), 'MULTIPOLYGON EMPTY') for cls in classes]
return rows, jaccard_stats
def get_polygons(im_id: str, mask: np.ndarray,
epsilon: float, min_area: float, fix: bool, buffer: float
) -> Tuple[MultiPolygon, MultiPolygon]:
assert len(mask.shape) == 2
polygons = utils.mask_to_polygons(
mask, epsilon=epsilon, min_area=min_area, fix=fix)
if buffer:
polygons = utils.to_multipolygon(polygons.buffer(buffer))
x_scaler, y_scaler = utils.get_scalers(im_id, im_size=mask.shape)
x_scaler = 1 / x_scaler
y_scaler = 1 / y_scaler
return polygons, shapely.affinity.scale(
polygons, xfact=x_scaler, yfact=y_scaler, origin=(0, 0, 0))
def square(x, hps):
if len(x.shape) == 2 or x.shape[2] <= 20:
return x[:hps.validation_square, :hps.validation_square]
else:
assert x.shape[0] <= 20
return x[:, :hps.validation_square, :hps.validation_square]
def log_jaccard(im_id: str, cls: int,
true_mask: np.ndarray, mask: np.ndarray, poly_mask: np.ndarray,
true_poly: MultiPolygon, poly: MultiPolygon,
valid_polygons=False):
assert len(mask.shape) == 2
pixel_jc = utils.mask_tp_fp_fn(mask, true_mask, 0.5)
if valid_polygons:
if not true_poly.is_valid:
true_poly = utils.to_multipolygon(true_poly.buffer(0))
if not poly.is_valid:
poly = utils.to_multipolygon(poly.buffer(0))
tp = true_poly.intersection(poly).area
fn = true_poly.difference(poly).area
fp = poly.difference(true_poly).area
poly_jc = tp, fp, fn
else:
poly_jc = utils.mask_tp_fp_fn(poly_mask, true_mask, 0.5)
logger.info('{} cls-{} pixel jaccard: {:.5f}, polygon jaccard: {:.5f}'
.format(im_id, cls, jaccard(pixel_jc), jaccard(poly_jc)))
return pixel_jc, poly_jc
def jaccard(tp_fp_fn):
return tp_fp_fn[0] / (sum(tp_fp_fn) + 1e-15)
if __name__ == '__main__':
main()