-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
87 lines (66 loc) · 4.58 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import pandas as pd
from model import get_model
from dataloader.single_task import SingleTaskDataloader
from dataloader.multi_task import MultiTaskDataloader
from dataloader.utils import read_json, generate_random_permutations
from utils import evaluate
def run(args, logger):
# Data
split_file = os.path.join("configs", "{}.json".format(args.split))
task_list = read_json(split_file)["train"]
# Model
model = get_model(args, logger)
model.set_up_model()
# Save Results
results_file = os.path.join(args.output_dir, "results.csv")
if os.path.exists(results_file):
df = pd.read_csv(results_file, index_col=0)
else:
df = pd.DataFrame(columns=["n_task", "n_shot", "permutation_id", "fewshot_sample_id", "global_prefix_n_tokens", "task_name", "accuracy", "macro_f1", "ood_rate"])
dataloader = MultiTaskDataloader(args, logger)
# in cases where we don't need all tasks, we select a subset of it
if args.n_task != len(task_list):
permutations = generate_random_permutations(task_list, n_item=len(task_list), n_permutations=1, seed=args.seed)
task_list = permutations[0][:args.n_task]
dataloader.load_data(task_list)
# create permutations and save to disk
permutations = dataloader.create_permutation(task_list, n=args.permutation_num, seed=args.seed)
perm_file = os.path.join(args.output_dir, "permutations.csv")
df_perm = pd.DataFrame(permutations)
df_perm.to_csv(perm_file, index=True)
for i, perm in enumerate(permutations):
logger.info("Permutation {}: {}".format(i, perm))
for j in range(5): # 5 random few-shot splits
if (args.use_random_labels or args.use_wrong_labels) and (args.global_perturbation):
global_prefix = dataloader.prepare_prefix(perm, j, perturb=perm) # perturb labels for all tasks
else:
global_prefix = dataloader.prepare_prefix(perm, j) # normal: use correct label for all tasks
global_prefix_n_tokens = model.get_n_tokens(global_prefix)
for test_task_name in task_list:
if not df[(df['permutation_id'] == i) & (df['fewshot_sample_id'] == j) & (df['task_name'] == test_task_name)].empty:
logger.info(f"perm_id: {i}, fewshot_sample_id: {j}, task: {test_task_name} tested, skip.")
continue
if args.exp_mode == "remove":
global_prefix = dataloader.prepare_prefix(perm, j, exclude=[test_task_name])
global_prefix_n_tokens = model.get_n_tokens(global_prefix)
elif (args.use_random_labels or args.use_wrong_labels) and (not args.global_perturbation): # perturb labels for the current task
global_prefix = dataloader.prepare_prefix(perm, j, perturb=[test_task_name])
global_prefix_n_tokens = model.get_n_tokens(global_prefix)
test_dataloader = SingleTaskDataloader(args, logger)
dataset_config, train_sets, test_set = test_dataloader.load_data(test_task_name)
# recall: directly do the task; replay: replay the (same set of) few-shot examples
n_shot_per_class = 0 if args.exp_mode in ["recall", "remove"] else args.n_shot
n_class = len(dataset_config["options"])
prefix = test_dataloader.prepare_prefix(dataset_config, train_sets[j][:n_shot_per_class * n_class], use_paraphrase=args.use_paraphrase)
prompts = test_dataloader.prepare_prompts(dataset_config, test_set)
if args.inference_method == "greedy":
raw_predictions = model.run_greedy(global_prefix + args.task_sep + prefix, prompts)
elif args.inference_method == "rank":
raw_predictions = model.run_rank(global_prefix + args.task_sep + prefix, prompts, options=dataset_config["options"])
true_labels = [item["label"] for item in test_set]
predictions = [item["prediction"] for item in raw_predictions]
acc, macro_f1, ood_rate = evaluate(args, true_labels, predictions, dataset_config["options"])
logger.info(f"n_task: {len(task_list)}, n_shot: {args.n_shot}, perm_id: {i}, fsl_id: {j}, prefix_tokens: {global_prefix_n_tokens}, task: {test_task_name}, acc: {acc:.2f}, macro_f1: {macro_f1:.4f}, ood_rate: {ood_rate:.2f}")
df.loc[len(df.index)] = [len(task_list), args.n_shot, i, j, global_prefix_n_tokens, test_task_name, acc, macro_f1, ood_rate]
df.to_csv(results_file)