-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_baseline.py
49 lines (36 loc) · 2.14 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import pandas as pd
from model import get_model
from dataloader.single_task import SingleTaskDataloader
from dataloader.utils import read_json
from utils import evaluate
def run_baseline(args, logger):
# Data
split_file = os.path.join("configs", "{}.json".format(args.split))
task_list = read_json(split_file)["test"]
# Model
model = get_model(args, logger)
model.set_up_model()
# Save Results
df = pd.DataFrame(columns=["task_name", "train_set_id", "n_shot_per_class", "accuracy", "macro_f1", "ood_rate"])
results_file = os.path.join(args.output_dir, "results.csv")
for task_name in task_list:
dataloader = SingleTaskDataloader(args, logger)
dataset_config, train_sets, test_set = dataloader.load_data(task_name)
n_class = len(dataset_config["options"])
for n_shot_per_class in [0,1,2,3,4,5,6,7,8,12,16]:
for train_set_id in range(5): # 5 random samples
prefix = dataloader.prepare_prefix(dataset_config, train_sets[train_set_id][:n_shot_per_class * n_class])
prompts = dataloader.prepare_prompts(dataset_config, test_set)
if args.inference_method == "greedy":
raw_predictions = model.run_greedy(prefix, prompts)
elif args.inference_method == "rank":
raw_predictions = model.run_rank(prefix, prompts, options=dataset_config["options"])
true_labels = [item["label"] for item in test_set]
predictions = [item["prediction"] for item in raw_predictions]
acc, macro_f1, ood_rate = evaluate(args, true_labels, predictions, dataset_config["options"])
logger.info("task: {}, train_set_id: {}, n_shot_per_class: {}, acc: {:.2f}, macro_f1: {:.4f}, ood_rate: {:.2f}".format(task_name, train_set_id, n_shot_per_class, acc, macro_f1, ood_rate))
df.loc[len(df.index)] = [task_name, train_set_id, n_shot_per_class, acc, macro_f1, ood_rate]
df.to_csv(results_file)
# don't need to repeat 5 times for 0-shot experiments
if n_shot_per_class == 0: break