From 3d02b6b4a312aef95365db090949816b3c53a0e8 Mon Sep 17 00:00:00 2001 From: Anton <100830759+antonwolfy@users.noreply.github.com> Date: Sat, 11 Jan 2025 23:03:01 +0100 Subject: [PATCH] Permit `"same_kind"` casting for element-wise in-place operators (#2170) The PR proposes to permit `"same_kind"` casting for element-wise in-place operators. The implementation leverages on dpctl changes added in scope of [PR#1827](https://github.com/IntelPython/dpctl/pull/1827). It also adds callbacks to support in-place bit-wise operators (leverages on dpctl changes from [RR#1447](https://github.com/IntelPython/dpctl/pull/1447)). The PR removes a temporary workaround from `dpnp.wrap` which depends on the implemented changes. --- dpnp/dpnp_algo/dpnp_elementwise_common.py | 18 +- dpnp/dpnp_array.py | 2 +- dpnp/dpnp_iface_bitwise.py | 5 + dpnp/dpnp_iface_trigonometric.py | 4 +- dpnp/tests/test_binary_ufuncs.py | 1067 +++++++++++++++++++++ dpnp/tests/test_bitwise.py | 113 ++- dpnp/tests/test_mathematical.py | 880 ----------------- 7 files changed, 1200 insertions(+), 889 deletions(-) create mode 100644 dpnp/tests/test_binary_ufuncs.py diff --git a/dpnp/dpnp_algo/dpnp_elementwise_common.py b/dpnp/dpnp_algo/dpnp_elementwise_common.py index d9868929738..9a31ffe1ed9 100644 --- a/dpnp/dpnp_algo/dpnp_elementwise_common.py +++ b/dpnp/dpnp_algo/dpnp_elementwise_common.py @@ -335,6 +335,20 @@ def __call__( "as an argument, but both were provided." ) + x1_usm = dpnp.get_usm_ndarray_or_scalar(x1) + x2_usm = dpnp.get_usm_ndarray_or_scalar(x2) + out_usm = None if out is None else dpnp.get_usm_ndarray(out) + + if ( + isinstance(x1, dpnp_array) + and x1 is out + and order == "K" + and dtype is None + ): + # in-place operation + super()._inplace_op(x1_usm, x2_usm) + return x1 + if order is None: order = "K" elif order in "afkcAFKC": @@ -344,9 +358,6 @@ def __call__( "order must be one of 'C', 'F', 'A', or 'K' (got '{order}')" ) - x1_usm = dpnp.get_usm_ndarray_or_scalar(x1) - x2_usm = dpnp.get_usm_ndarray_or_scalar(x2) - if dtype is not None: if dpnp.isscalar(x1): x1_usm = dpt.asarray( @@ -368,7 +379,6 @@ def __call__( x1_usm = dpt.astype(x1_usm, dtype, copy=False) x2_usm = dpt.astype(x2_usm, dtype, copy=False) - out_usm = None if out is None else dpnp.get_usm_ndarray(out) res_usm = super().__call__(x1_usm, x2_usm, out=out_usm, order=order) if out is not None and isinstance(out, dpnp_array): diff --git a/dpnp/dpnp_array.py b/dpnp/dpnp_array.py index 0fc0fa40280..af0cf753c1d 100644 --- a/dpnp/dpnp_array.py +++ b/dpnp/dpnp_array.py @@ -399,7 +399,7 @@ def __imatmul__(self, other): axes = [(-2, -1), (-2, -1), (-2, -1)] try: - dpnp.matmul(self, other, out=self, axes=axes) + dpnp.matmul(self, other, out=self, dtype=self.dtype, axes=axes) except AxisError: # AxisError should indicate that the axes argument didn't work out # which should mean the second operand not being 2 dimensional. diff --git a/dpnp/dpnp_iface_bitwise.py b/dpnp/dpnp_iface_bitwise.py index 5d15975626d..f7f19f42a08 100644 --- a/dpnp/dpnp_iface_bitwise.py +++ b/dpnp/dpnp_iface_bitwise.py @@ -208,6 +208,7 @@ def binary_repr(num, width=None): ti._bitwise_and_result_type, ti._bitwise_and, _BITWISE_AND_DOCSTRING, + binary_inplace_fn=ti._bitwise_and_inplace, ) @@ -285,6 +286,7 @@ def binary_repr(num, width=None): ti._bitwise_or_result_type, ti._bitwise_or, _BITWISE_OR_DOCSTRING, + binary_inplace_fn=ti._bitwise_or_inplace, ) @@ -366,6 +368,7 @@ def binary_repr(num, width=None): ti._bitwise_xor_result_type, ti._bitwise_xor, _BITWISE_XOR_DOCSTRING, + binary_inplace_fn=ti._bitwise_xor_inplace, ) @@ -518,6 +521,7 @@ def binary_repr(num, width=None): ti._bitwise_left_shift_result_type, ti._bitwise_left_shift, _LEFT_SHIFT_DOCSTRING, + binary_inplace_fn=ti._bitwise_left_shift_inplace, ) bitwise_left_shift = left_shift # bitwise_left_shift is an alias for left_shift @@ -595,6 +599,7 @@ def binary_repr(num, width=None): ti._bitwise_right_shift_result_type, ti._bitwise_right_shift, _RIGHT_SHIFT_DOCSTRING, + binary_inplace_fn=ti._bitwise_right_shift_inplace, ) # bitwise_right_shift is an alias for right_shift diff --git a/dpnp/dpnp_iface_trigonometric.py b/dpnp/dpnp_iface_trigonometric.py index 1404021844f..6a81bc9e833 100644 --- a/dpnp/dpnp_iface_trigonometric.py +++ b/dpnp/dpnp_iface_trigonometric.py @@ -2450,7 +2450,5 @@ def unwrap(p, discont=None, axis=-1, *, period=2 * dpnp.pi): up = dpnp.astype(p, dtype=dt, copy=True) up[slice1] = p[slice1] - # TODO: replace, once dpctl-1757 resolved - # up[slice1] += ph_correct.cumsum(axis=axis) - up[slice1] += ph_correct.cumsum(axis=axis, dtype=dt) + up[slice1] += ph_correct.cumsum(axis=axis) return up diff --git a/dpnp/tests/test_binary_ufuncs.py b/dpnp/tests/test_binary_ufuncs.py new file mode 100644 index 00000000000..95a8d09852a --- /dev/null +++ b/dpnp/tests/test_binary_ufuncs.py @@ -0,0 +1,1067 @@ +import numpy +import pytest +from numpy.testing import ( + assert_allclose, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, +) + +import dpnp + +from .helper import ( + assert_dtype_allclose, + get_all_dtypes, + get_complex_dtypes, + get_float_complex_dtypes, + get_float_dtypes, + get_integer_dtypes, + has_support_aspect16, +) +from .test_umath import ( + _get_numpy_arrays_2in_1out, + _get_output_data_type, +) + +""" +The scope includes tests with only functions which are instances of +`DPNPUnaryFunc` class. + +""" + + +class TestAdd: + ALL_DTYPES = get_all_dtypes(no_none=True) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_add(self, dtype): + a, b, expected = _get_numpy_arrays_2in_1out("add", dtype, [-5, 5, 10]) + + ia, ib = dpnp.array(a), dpnp.array(b) + iout = dpnp.empty(expected.shape, dtype=dtype) + result = dpnp.add(ia, ib, out=iout) + + assert result is iout + assert_dtype_allclose(result, expected) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_out_overlap(self, dtype): + size = 1 if dtype == dpnp.bool else 15 + a = numpy.arange(2 * size, dtype=dtype) + ia = dpnp.array(a) + + dpnp.add(ia[size::], ia[::2], out=ia[:size:]) + numpy.add(a[size::], a[::2], out=a[:size:]) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_none=True, no_bool=True) + ) + def test_inplace_strides(self, dtype): + size = 21 + a = numpy.arange(size, dtype=dtype) + a[::3] += 4 + + ia = dpnp.arange(size, dtype=dtype) + ia[::3] += 4 + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype1", ALL_DTYPES) + @pytest.mark.parametrize("dtype2", ALL_DTYPES) + def test_inplace_dtype(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a += b + ia += ib + assert_dtype_allclose(ia, a) + else: + with pytest.raises(TypeError): + a += b + + with pytest.raises(ValueError): + ia += ib + + @pytest.mark.parametrize("dtype1", ALL_DTYPES) + @pytest.mark.parametrize("dtype2", ALL_DTYPES) + def test_inplace_dtype_explicit(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + result = dpnp.add(ia, ib, out=ia) + expected = numpy.add(a, b, out=a) + assert_dtype_allclose(result, expected) + else: + assert_raises(TypeError, numpy.add, a, b, out=a) + assert_raises(ValueError, dpnp.add, ia, ib, out=ia) + + @pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)]) + def test_invalid_shape(self, shape): + a, b = dpnp.arange(10), dpnp.arange(10) + out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.add(a, b, out=out) + + @pytest.mark.parametrize("out", [4, (), [], (3, 7), [2, 4]]) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.add, a, 2, out) + assert_raises(TypeError, numpy.add, a.asnumpy(), 2, out) + + +class TestBoundFuncs: + @pytest.fixture( + params=[ + {"func_name": "fmax", "input_values": [-5, 5, 10]}, + {"func_name": "fmin", "input_values": [-5, 5, 10]}, + {"func_name": "maximum", "input_values": [-5, 5, 10]}, + {"func_name": "minimum", "input_values": [-5, 5, 10]}, + ], + ids=[ + "fmax", + "fmin", + "maximum", + "minimum", + ], + ) + def func_params(self, request): + return request.param + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True) + ) + def test_out(self, func_params, dtype): + func_name = func_params["func_name"] + input_values = func_params["input_values"] + a, b, expected = _get_numpy_arrays_2in_1out( + func_name, dtype, input_values + ) + + ia, ib = dpnp.array(a), dpnp.array(b) + iout = dpnp.empty(expected.shape, dtype=dtype) + result = getattr(dpnp, func_name)(ia, ib, out=iout) + + assert result is iout + assert_dtype_allclose(result, expected) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True) + ) + def test_out_overlap(self, func_params, dtype): + func_name = func_params["func_name"] + size = 15 + a = numpy.arange(2 * size, dtype=dtype) + ia = dpnp.array(a) + + getattr(dpnp, func_name)(ia[size::], ia[::2], out=ia[:size:]) + getattr(numpy, func_name)(a[size::], a[::2], out=a[:size:]) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)]) + def test_invalid_shape(self, func_params, shape): + func_name = func_params["func_name"] + a, b = dpnp.arange(10), dpnp.arange(10) + out = dpnp.empty(shape) + + with pytest.raises(ValueError): + getattr(dpnp, func_name)(a, b, out=out) + + @pytest.mark.parametrize("out", [4, (), [], (3, 7), [2, 4]]) + def test_invalid_out(self, func_params, out): + func_name = func_params["func_name"] + a = dpnp.arange(10) + + assert_raises(TypeError, getattr(dpnp, func_name), a, 2, out) + assert_raises(TypeError, getattr(numpy, func_name), a.asnumpy(), 2, out) + + +class TestDivide: + @pytest.mark.usefixtures("suppress_divide_invalid_numpy_warnings") + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_none=True, no_bool=True) + ) + def test_divide(self, dtype): + a, b, expected = _get_numpy_arrays_2in_1out( + "divide", dtype, [-5, 5, 10] + ) + + ia, ib = dpnp.array(a), dpnp.array(b) + out_dtype = _get_output_data_type(dtype) + iout = dpnp.empty(expected.shape, dtype=out_dtype) + result = dpnp.divide(ia, ib, out=iout) + + assert result is iout + assert_dtype_allclose(result, expected) + + @pytest.mark.usefixtures("suppress_divide_invalid_numpy_warnings") + @pytest.mark.parametrize("dtype", get_float_complex_dtypes()) + def test_out_overlap(self, dtype): + size = 15 + a = numpy.arange(2 * size, dtype=dtype) + ia = dpnp.array(a) + + dpnp.divide(ia[size::], ia[::2], out=ia[:size:]) + numpy.divide(a[size::], a[::2], out=a[:size:]) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype", get_float_complex_dtypes()) + def test_inplace_strides(self, dtype): + size = 21 + a = numpy.arange(size, dtype=dtype) + a[::3] /= 4 + + ia = dpnp.arange(size, dtype=dtype) + ia[::3] /= 4 + + assert_allclose(ia, a) + + @pytest.mark.parametrize("dtype1", get_all_dtypes(no_none=True)) + @pytest.mark.parametrize("dtype2", get_float_complex_dtypes()) + def test_inplace_dtype(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, -10, 1, 10], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a /= b + ia /= ib + assert_dtype_allclose(ia, a) + else: + with pytest.raises(TypeError): + a /= b + + with pytest.raises(ValueError): + ia /= ib + + @pytest.mark.parametrize("dtype1", get_all_dtypes(no_none=True)) + @pytest.mark.parametrize("dtype2", get_float_complex_dtypes()) + def test_inplace_dtype_explicit(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, -10, 1, 10], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + result = dpnp.divide(ia, ib, out=ia) + expected = numpy.divide(a, b, out=a) + assert_dtype_allclose(result, expected) + else: + assert_raises(TypeError, numpy.divide, a, b, out=a) + assert_raises(ValueError, dpnp.divide, ia, ib, out=ia) + + @pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)]) + def test_invalid_shape(self, shape): + a, b = dpnp.arange(10), dpnp.arange(10) + out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.divide(a, b, out=out) + + @pytest.mark.parametrize("out", [4, (), [], (3, 7), [2, 4]]) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.divide, a, 2, out) + assert_raises(TypeError, numpy.divide, a.asnumpy(), 2, out) + + +@pytest.mark.parametrize("func", ["floor_divide", "remainder"]) +class TestFloorDivideRemainder: + ALL_DTYPES = get_all_dtypes(no_none=True, no_bool=True, no_complex=True) + + def do_inplace_op(self, base, other, func): + if func == "floor_divide": + base //= other + else: + base %= other + + @pytest.mark.usefixtures("suppress_divide_numpy_warnings") + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_basic(self, func, dtype): + a, b, expected = _get_numpy_arrays_2in_1out(func, dtype, [-5, 5, 10]) + + ia, ib = dpnp.array(a), dpnp.array(b) + iout = dpnp.empty(expected.shape, dtype=dtype) + result = getattr(dpnp, func)(ia, ib, out=iout) + + assert result is iout + assert_dtype_allclose(result, expected) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_out_overlap(self, func, dtype): + size = 15 + a = numpy.arange(1, 2 * size + 1, dtype=dtype) + ia = dpnp.array(a) + + getattr(dpnp, func)(ia[size::], ia[::2], out=ia[:size:]) + getattr(numpy, func)(a[size::], a[::2], out=a[:size:]) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_inplace_strides(self, func, dtype): + size = 21 + + a = numpy.arange(size, dtype=dtype) + self.do_inplace_op(a[::3], 4, func) + + ia = dpnp.arange(size, dtype=dtype) + self.do_inplace_op(ia[::3], 4, func) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype1", [dpnp.bool] + ALL_DTYPES) + @pytest.mark.parametrize("dtype2", get_float_dtypes()) + def test_inplace_dtype(self, func, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, -10, 1, 10], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + self.do_inplace_op(a, b, func) + self.do_inplace_op(ia, ib, func) + assert_dtype_allclose(ia, a) + else: + with pytest.raises(TypeError): + self.do_inplace_op(a, b, func) + + with pytest.raises(ValueError): + self.do_inplace_op(ia, ib, func) + + @pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)]) + def test_invalid_shape(self, func, shape): + a, b = dpnp.arange(10), dpnp.arange(10) + out = dpnp.empty(shape) + + with pytest.raises(ValueError): + getattr(dpnp, func)(a, b, out=out) + + @pytest.mark.parametrize("out", [4, (), [], (3, 7), [2, 4]]) + def test_invalid_out(self, func, out): + a = dpnp.arange(10) + + assert_raises(TypeError, getattr(dpnp, func), a, 2, out) + assert_raises(TypeError, getattr(numpy, func), a.asnumpy(), 2, out) + + +class TestFmaxFmin: + @pytest.mark.skipif(not has_support_aspect16(), reason="no fp16 support") + @pytest.mark.parametrize("func", ["fmax", "fmin"]) + def test_half(self, func): + a = numpy.array([0, 1, 2, 4, 2], dtype=numpy.float16) + b = numpy.array([-2, 5, 1, 4, 3], dtype=numpy.float16) + c = numpy.array([0, -1, -numpy.inf, numpy.nan, 6], dtype=numpy.float16) + ia, ib, ic = dpnp.array(a), dpnp.array(b), dpnp.array(c) + + result = getattr(dpnp, func)(ia, ib) + expected = getattr(numpy, func)(a, b) + assert_equal(result, expected) + + result = getattr(dpnp, func)(ib, ic) + expected = getattr(numpy, func)(b, c) + assert_equal(result, expected) + + @pytest.mark.parametrize("func", ["fmax", "fmin"]) + @pytest.mark.parametrize("dtype", get_float_dtypes()) + def test_float_nans(self, func, dtype): + a = numpy.array([0, numpy.nan, numpy.nan], dtype=dtype) + b = numpy.array([numpy.nan, 0, numpy.nan], dtype=dtype) + ia, ib = dpnp.array(a), dpnp.array(b) + + result = getattr(dpnp, func)(ia, ib) + expected = getattr(numpy, func)(a, b) + assert_equal(result, expected) + + @pytest.mark.parametrize("func", ["fmax", "fmin"]) + @pytest.mark.parametrize("dtype", get_complex_dtypes()) + @pytest.mark.parametrize( + "nan_val", + [ + complex(numpy.nan, 0), + complex(0, numpy.nan), + complex(numpy.nan, numpy.nan), + ], + ids=["nan+0j", "nanj", "nan+nanj"], + ) + def test_complex_nans(self, func, dtype, nan_val): + a = numpy.array([0, nan_val, nan_val], dtype=dtype) + b = numpy.array([nan_val, 0, nan_val], dtype=dtype) + ia, ib = dpnp.array(a), dpnp.array(b) + + result = getattr(dpnp, func)(ia, ib) + expected = getattr(numpy, func)(a, b) + assert_equal(result, expected) + + @pytest.mark.parametrize("func", ["fmax", "fmin"]) + @pytest.mark.parametrize("dtype", get_float_dtypes(no_float16=False)) + def test_precision(self, func, dtype): + dtmin = numpy.finfo(dtype).min + dtmax = numpy.finfo(dtype).max + d1 = dtype(0.1) + d1_next = numpy.nextafter(d1, numpy.inf) + + test_cases = [ + # v1 v2 + (dtmin, -numpy.inf), + (dtmax, -numpy.inf), + (d1, d1_next), + (dtmax, numpy.nan), + ] + + for v1, v2 in test_cases: + a = numpy.array([v1]) + b = numpy.array([v2]) + ia, ib = dpnp.array(a), dpnp.array(b) + + result = getattr(dpnp, func)(ia, ib) + expected = getattr(numpy, func)(a, b) + assert_allclose(result, expected) + + +class TestHeavside: + @pytest.mark.parametrize("val", [0.5, 1.0]) + @pytest.mark.parametrize("dt", get_float_dtypes()) + def test_basic(self, val, dt): + a = numpy.array( + [[-30.0, -0.1, 0.0, 0.2], [7.5, numpy.nan, numpy.inf, -numpy.inf]], + dtype=dt, + ) + ia = dpnp.array(a) + + result = dpnp.heaviside(ia, val) + expected = numpy.heaviside(a, val) + assert_array_equal(result, expected) + + @pytest.mark.parametrize( + "a_dt", get_all_dtypes(no_none=True, no_complex=True) + ) + @pytest.mark.parametrize( + "b_dt", get_all_dtypes(no_none=True, no_complex=True) + ) + def test_both_input_as_arrays(self, a_dt, b_dt): + a = numpy.array([-1.5, 0, 2.0], dtype=a_dt) + b = numpy.array([-0, 0.5, 1.0], dtype=b_dt) + ia, ib = dpnp.array(a), dpnp.array(b) + + result = dpnp.heaviside(ia, ib) + expected = numpy.heaviside(a, b) + assert_array_equal(result, expected) + + @pytest.mark.parametrize("xp", [dpnp, numpy]) + @pytest.mark.parametrize("dt", get_complex_dtypes()) + def test_complex_dtype(self, xp, dt): + a = xp.array([-1.5, 0, 2.0], dtype=dt) + assert_raises((TypeError, ValueError), xp.heaviside, a, 0.5) + + +class TestLdexp: + @pytest.mark.parametrize("mant_dt", get_float_dtypes()) + @pytest.mark.parametrize("exp_dt", get_integer_dtypes()) + def test_basic(self, mant_dt, exp_dt): + if ( + numpy.lib.NumpyVersion(numpy.__version__) < "2.0.0" + and exp_dt == numpy.int64 + and numpy.dtype("l") != numpy.int64 + ): + pytest.skip("numpy.ldexp doesn't have a loop for the input types") + + mant = numpy.array(2.0, dtype=mant_dt) + exp = numpy.array(3, dtype=exp_dt) + imant, iexp = dpnp.array(mant), dpnp.array(exp) + + result = dpnp.ldexp(imant, iexp) + expected = numpy.ldexp(mant, exp) + assert_almost_equal(result, expected) + + def test_float_scalar(self): + a = numpy.array(3) + ia = dpnp.array(a) + + result = dpnp.ldexp(2.0, ia) + expected = numpy.ldexp(2.0, a) + assert_almost_equal(result, expected) + + @pytest.mark.parametrize("max_min", ["max", "min"]) + def test_overflow(self, max_min): + exp_val = getattr(numpy.iinfo(numpy.dtype("l")), max_min) + + result = dpnp.ldexp(dpnp.array(2.0), exp_val) + with numpy.errstate(over="ignore"): + # we can't use here numpy.array(2.0), because NumPy 2.0 will cast + # `exp_val` to int32 dtype then and `OverflowError` will be raised + expected = numpy.ldexp(2.0, exp_val) + assert_equal(result, expected) + + @pytest.mark.parametrize("val", [numpy.nan, numpy.inf, -numpy.inf]) + def test_nan_int_mant(self, val): + mant = numpy.array(val) + imant = dpnp.array(mant) + + result = dpnp.ldexp(imant, 5) + expected = numpy.ldexp(mant, 5) + assert_equal(result, expected) + + def test_zero_exp(self): + exp = numpy.array(0) + iexp = dpnp.array(exp) + + result = dpnp.ldexp(-2.5, iexp) + expected = numpy.ldexp(-2.5, exp) + assert_equal(result, expected) + + @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4]) + @pytest.mark.parametrize("dt", get_float_dtypes()) + def test_strides(self, stride, dt): + mant = numpy.array( + [0.125, 0.25, 0.5, 1.0, 1.0, 2.0, 4.0, 8.0], dtype=dt + ) + exp = numpy.array([3, 2, 1, 0, 0, -1, -2, -3], dtype="i") + out = numpy.zeros(8, dtype=dt) + imant, iexp, iout = dpnp.array(mant), dpnp.array(exp), dpnp.array(out) + + result = dpnp.ldexp(imant[::stride], iexp[::stride], out=iout[::stride]) + expected = numpy.ldexp(mant[::stride], exp[::stride], out=out[::stride]) + assert_equal(result, expected) + + def test_bool_exp(self): + result = dpnp.ldexp(3.7, dpnp.array(True)) + expected = numpy.ldexp(3.7, numpy.array(True)) + assert_almost_equal(result, expected) + + @pytest.mark.parametrize("xp", [dpnp, numpy]) + def test_uint64_exp(self, xp): + x = xp.array(4, dtype=numpy.uint64) + assert_raises((ValueError, TypeError), xp.ldexp, 7.3, x) + + +class TestMultiply: + ALL_DTYPES = get_all_dtypes(no_none=True) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_multiply(self, dtype): + a, b, expected = _get_numpy_arrays_2in_1out( + "multiply", dtype, [0, 10, 10] + ) + + ia, ib = dpnp.array(a), dpnp.array(b) + iout = dpnp.empty(expected.shape, dtype=dtype) + result = dpnp.multiply(ia, ib, out=iout) + + assert result is iout + assert_dtype_allclose(result, expected) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_out_overlap(self, dtype): + size = 1 if dtype == dpnp.bool else 15 + a = numpy.arange(2 * size, dtype=dtype) + ia = dpnp.array(a) + + dpnp.multiply(ia[size::], ia[::2], out=ia[:size:]) + numpy.multiply(a[size::], a[::2], out=a[:size:]) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_none=True, no_bool=True) + ) + def test_inplace_strides(self, dtype): + size = 21 + a = numpy.arange(size, dtype=dtype) + a[::3] *= 4 + + ia = dpnp.arange(size, dtype=dtype) + ia[::3] *= 4 + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype1", ALL_DTYPES) + @pytest.mark.parametrize("dtype2", ALL_DTYPES) + def test_inplace_dtype(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a *= b + ia *= ib + assert_dtype_allclose(ia, a) + else: + with pytest.raises(TypeError): + a *= b + + with pytest.raises(ValueError): + ia *= ib + + @pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)]) + def test_invalid_shape(self, shape): + a, b = dpnp.arange(10), dpnp.arange(10) + out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.multiply(a, b, out=out) + + @pytest.mark.parametrize("out", [4, (), [], (3, 7), [2, 4]]) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.multiply, a, 2, out) + assert_raises(TypeError, numpy.multiply, a.asnumpy(), 2, out) + + +class TestNextafter: + @pytest.mark.parametrize("dt", get_float_dtypes()) + @pytest.mark.parametrize( + "val1, val2", + [ + pytest.param(1, 2), + pytest.param(1, 0), + pytest.param(1, 1), + ], + ) + def test_float(self, val1, val2, dt): + v1 = numpy.array(val1, dtype=dt) + v2 = numpy.array(val2, dtype=dt) + iv1, iv2 = dpnp.array(v1), dpnp.array(v2) + + result = dpnp.nextafter(iv1, iv2) + expected = numpy.nextafter(v1, v2) + assert_equal(result, expected) + + @pytest.mark.parametrize("dt", get_float_dtypes()) + def test_float_nan(self, dt): + a = numpy.array(1, dtype=dt) + ia = dpnp.array(a) + + result = dpnp.nextafter(ia, dpnp.nan) + expected = numpy.nextafter(a, numpy.nan) + assert_equal(result, expected) + + result = dpnp.nextafter(dpnp.nan, ia) + expected = numpy.nextafter(numpy.nan, a) + assert_equal(result, expected) + + @pytest.mark.parametrize("val", [0x7C00, 0x8000], ids=["val1", "val2"]) + def test_f16_strides(self, val): + a = numpy.arange(val, dtype=numpy.uint16).astype(numpy.float16) + hinf = numpy.array((numpy.inf,), dtype=numpy.float16) + ia, ihinf = dpnp.array(a), dpnp.array(hinf) + + result = dpnp.nextafter(ia[:-1], ihinf) + expected = numpy.nextafter(a[:-1], hinf) + assert_equal(result, expected) + + result = dpnp.nextafter(ia[0], -ihinf) + expected = numpy.nextafter(a[0], -hinf) + assert_equal(result, expected) + + result = dpnp.nextafter(ia[1:], -ihinf) + expected = numpy.nextafter(a[1:], -hinf) + assert_equal(result, expected) + + @pytest.mark.parametrize("val", [0x7C00, 0x8000], ids=["val1", "val2"]) + def test_f16_array_inf(self, val): + a = numpy.arange(val, dtype=numpy.uint16).astype(numpy.float16) + hinf = numpy.array((numpy.inf,), dtype=numpy.float16) + ia, ihinf = dpnp.array(a), dpnp.array(hinf) + + result = dpnp.nextafter(ihinf, ia) + expected = numpy.nextafter(hinf, a) + assert_equal(result, expected) + + result = dpnp.nextafter(-ihinf, ia) + expected = numpy.nextafter(-hinf, a) + assert_equal(result, expected) + + @pytest.mark.parametrize( + "sign1, sign2", + [ + pytest.param(1, 1), + pytest.param(1, -1), + pytest.param(-1, 1), + pytest.param(-1, -1), + ], + ) + def test_f16_inf(self, sign1, sign2): + hinf1 = numpy.array((sign1 * numpy.inf,), dtype=numpy.float16) + hinf2 = numpy.array((sign2 * numpy.inf,), dtype=numpy.float16) + ihinf1, ihinf2 = dpnp.array(hinf1), dpnp.array(hinf2) + + result = dpnp.nextafter(ihinf1, ihinf2) + expected = numpy.nextafter(hinf1, hinf2) + assert_equal(result, expected) + + @pytest.mark.parametrize("val", [0x7C00, 0x8000], ids=["val1", "val2"]) + def test_f16_array_nan(self, val): + a = numpy.arange(val, dtype=numpy.uint16).astype(numpy.float16) + nan = numpy.array((numpy.nan,), dtype=numpy.float16) + ia, inan = dpnp.array(a), dpnp.array(nan) + + result = dpnp.nextafter(ia, inan) + expected = numpy.nextafter(a, nan) + assert_equal(result, expected) + + result = dpnp.nextafter(inan, ia) + expected = numpy.nextafter(nan, a) + assert_equal(result, expected) + + @pytest.mark.parametrize( + "val1, val2", + [ + pytest.param(numpy.nan, numpy.nan), + pytest.param(numpy.inf, numpy.nan), + pytest.param(numpy.nan, numpy.inf), + ], + ) + def test_f16_inf_nan(self, val1, val2): + v1 = numpy.array((val1,), dtype=numpy.float16) + v2 = numpy.array((val2,), dtype=numpy.float16) + iv1, iv2 = dpnp.array(v1), dpnp.array(v2) + + result = dpnp.nextafter(iv1, iv2) + expected = numpy.nextafter(v1, v2) + assert_equal(result, expected) + + @pytest.mark.parametrize( + "val, scalar", + [ + pytest.param(65504, -numpy.inf), + pytest.param(-65504, numpy.inf), + pytest.param(numpy.inf, 0), + pytest.param(-numpy.inf, 0), + pytest.param(0, numpy.nan), + pytest.param(numpy.nan, 0), + ], + ) + def test_f16_corner_values_with_scalar(self, val, scalar): + a = numpy.array(val, dtype=numpy.float16) + ia = dpnp.array(a) + scalar = numpy.float16(scalar) + + result = dpnp.nextafter(ia, scalar) + expected = numpy.nextafter(a, scalar) + assert_equal(result, expected) + + +class TestPower: + ALL_DTYPES = get_all_dtypes(no_none=True) + + @pytest.mark.parametrize("val_type", ALL_DTYPES) + @pytest.mark.parametrize("data_type", ALL_DTYPES) + @pytest.mark.parametrize("val", [1.5, 1, 5], ids=["1.5", "1", "5"]) + @pytest.mark.parametrize( + "array", + [ + [[0, 0], [0, 0]], + [[1, 2], [1, 2]], + [[1, 2], [3, 4]], + [[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]], + [ + [[[1, 2], [3, 4]], [[1, 2], [2, 1]]], + [[[1, 3], [3, 1]], [[0, 1], [1, 3]]], + ], + ], + ids=[ + "[[0, 0], [0, 0]]", + "[[1, 2], [1, 2]]", + "[[1, 2], [3, 4]]", + "[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]", + "[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]", + ], + ) + def test_basic(self, array, val, data_type, val_type): + a = numpy.array(array, dtype=data_type) + ia = dpnp.array(array, dtype=data_type) + val_ = val_type(val) + + result = dpnp.power(ia, val_) + expected = numpy.power(a, val_) + assert_allclose(result, expected, rtol=1e-6) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_power(self, dtype): + numpy.random.seed(42) + a, b, expected = _get_numpy_arrays_2in_1out("power", dtype, [0, 10, 10]) + + ia, ib = dpnp.array(a), dpnp.array(b) + out_dtype = numpy.int8 if dtype == numpy.bool_ else dtype + iout = dpnp.empty(expected.shape, dtype=out_dtype) + result = dpnp.power(ia, ib, out=iout) + + assert result is iout + assert_dtype_allclose(result, expected) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_none=True, no_bool=True) + ) + def test_out_overlap(self, dtype): + size = 1 if dtype == dpnp.bool else 10 + a = numpy.arange(2 * size, dtype=dtype) + ia = dpnp.array(a) + + dpnp.power(ia[size::], ia[::2], out=ia[:size:]), + numpy.power(a[size::], a[::2], out=a[:size:]) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_none=True, no_bool=True) + ) + def test_inplace_strided_out(self, dtype): + size = 5 + a = numpy.arange(2 * size, dtype=dtype) + a[::3] **= 3 + + ia = dpnp.arange(2 * size, dtype=dtype) + ia[::3] **= 3 + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype1", ALL_DTYPES) + @pytest.mark.parametrize("dtype2", ALL_DTYPES) + def test_inplace_dtype(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, 2, 0, 1, 3], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind") and not ( + dtype1 == dtype2 == dpnp.bool + ): + a **= b + ia **= ib + assert_dtype_allclose(ia, a) + else: + with pytest.raises(TypeError): + a **= b + + with pytest.raises(ValueError): + ia **= ib + + @pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)]) + def test_invalid_shape(self, shape): + a, b = dpnp.arange(10), dpnp.arange(10) + out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.power(a, b, out=out) + + @pytest.mark.parametrize("out", [4, (), [], (3, 7), [2, 4]]) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.power, a, 2, out) + assert_raises(TypeError, numpy.power, a.asnumpy(), 2, out) + + @pytest.mark.usefixtures("suppress_invalid_numpy_warnings") + def test_complex_values(self): + a = numpy.array([0j, 1 + 1j, 0 + 2j, 1 + 2j, numpy.nan, numpy.inf]) + ia = dpnp.array(a) + func = lambda x: x**2 + + assert_dtype_allclose(func(ia), func(a)) + + @pytest.mark.parametrize("val", [0, 1], ids=["0", "1"]) + @pytest.mark.parametrize("dtype", get_integer_dtypes()) + def test_integer_power_of_0_or_1(self, val, dtype): + a = numpy.arange(10, dtype=dtype) + ia = dpnp.array(a) + func = lambda x: val**x + + assert_equal(func(ia), func(a)) + + @pytest.mark.parametrize("dtype", get_integer_dtypes()) + def test_integer_to_negative_power(self, dtype): + a = dpnp.arange(2, 10, dtype=dtype) + b = dpnp.full(8, -2, dtype=dtype) + zeros = dpnp.zeros(8, dtype=dtype) + ones = dpnp.ones(8, dtype=dtype) + + assert_array_equal(ones ** (-2), zeros) + assert_equal( + a ** (-3), zeros + ) # positive integer to negative integer power + assert_equal( + b ** (-4), zeros + ) # negative integer to negative integer power + + def test_float_to_inf(self): + a = numpy.array( + [1, 1, 2, 2, -2, -2, numpy.inf, -numpy.inf], dtype=numpy.float32 + ) + b = numpy.array( + [ + numpy.inf, + -numpy.inf, + numpy.inf, + -numpy.inf, + numpy.inf, + -numpy.inf, + numpy.inf, + -numpy.inf, + ], + dtype=numpy.float32, + ) + + expected = a**b + result = dpnp.array(a) ** dpnp.array(b) + assert_allclose(result, expected) + + @pytest.mark.parametrize("shape", [(), (3, 2)], ids=["()", "(3, 2)"]) + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_power_scalar(self, shape, dtype): + a = numpy.ones(shape, dtype=dtype) + ia = dpnp.ones(shape, dtype=dtype) + + result = 4.2**ia**-1.3 + expected = 4.2**a**-1.3 + assert_allclose(result, expected, rtol=1e-6) + + result **= ia + expected **= a + assert_allclose(result, expected, rtol=1e-6) + + def test_alias(self): + a = dpnp.arange(10) + res1 = dpnp.power(a, 3) + res2 = dpnp.pow(a, 3) + + assert_array_equal(res1, res2) + + +class TestRationalFunctions: + @pytest.mark.parametrize("func", ["gcd", "lcm"]) + @pytest.mark.parametrize("dt1", get_integer_dtypes()) + @pytest.mark.parametrize("dt2", get_integer_dtypes()) + def test_basic(self, func, dt1, dt2): + a = numpy.array([12, 120], dtype=dt1) + b = numpy.array([20, 120], dtype=dt2) + ia, ib = dpnp.array(a), dpnp.array(b) + + expected = getattr(numpy, func)(a, b) + result = getattr(dpnp, func)(ia, ib) + assert_array_equal(result, expected) + + @pytest.mark.parametrize("func", ["gcd", "lcm"]) + @pytest.mark.parametrize("dt", get_integer_dtypes()) + def test_broadcasting(self, func, dt): + a = numpy.arange(6, dtype=dt) + ia = dpnp.array(a) + b = 20 + + expected = getattr(numpy, func)(a, b) + result = getattr(dpnp, func)(ia, b) + assert_array_equal(result, expected) + + @pytest.mark.parametrize("dt", [numpy.int32, numpy.int64]) + def test_gcd_overflow(self, dt): + a = dt(numpy.iinfo(dt).min) # negative power of two + ia = dpnp.array(a) + q = -(a // 4) + + # verify that we don't overflow when taking abs(x) + # not relevant for lcm, where the result is unrepresentable anyway + expected = numpy.gcd(a, q) + result = dpnp.gcd(ia, q) + assert_array_equal(result, expected) + + def test_lcm_overflow(self): + big = numpy.int32(numpy.iinfo(numpy.int32).max // 11) + a, b = 2 * big, 5 * big + ia, ib = dpnp.array(a), dpnp.array(b) + + # verify that we don't overflow when a*b does overflow + expected = numpy.lcm(a, b) + result = dpnp.lcm(ia, ib) + assert_array_equal(result, expected) + + @pytest.mark.parametrize("func", ["gcd", "lcm"]) + @pytest.mark.parametrize("xp", [dpnp, numpy]) + def test_inf_and_nan(self, func, xp): + inf = xp.array([xp.inf]) + assert_raises((TypeError, ValueError), getattr(xp, func), inf, 1) + assert_raises((TypeError, ValueError), getattr(xp, func), 1, inf) + assert_raises((TypeError, ValueError), getattr(xp, func), xp.nan, inf) + assert_raises( + (TypeError, ValueError), getattr(xp, func), 4, float(xp.inf) + ) + + +class TestSubtract: + ALL_DTYPES = get_all_dtypes(no_none=True, no_bool=True) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_add(self, dtype): + a, b, expected = _get_numpy_arrays_2in_1out( + "subtract", dtype, [-5, 5, 10] + ) + + ia, ib = dpnp.array(a), dpnp.array(b) + iout = dpnp.empty(expected.shape, dtype=dtype) + result = dpnp.subtract(ia, ib, out=iout) + + assert result is iout + assert_dtype_allclose(result, expected) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_out_overlap(self, dtype): + size = 1 if dtype == dpnp.bool else 15 + a = numpy.arange(2 * size, dtype=dtype) + ia = dpnp.array(a) + + dpnp.subtract(ia[size::], ia[::2], out=ia[:size:]) + numpy.subtract(a[size::], a[::2], out=a[:size:]) + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype", ALL_DTYPES) + def test_inplace_strides(self, dtype): + size = 21 + a = numpy.arange(size, dtype=dtype) + a[::3] -= 4 + + ia = dpnp.arange(size, dtype=dtype) + ia[::3] -= 4 + + assert_dtype_allclose(ia, a) + + @pytest.mark.parametrize("dtype1", ALL_DTYPES) + @pytest.mark.parametrize("dtype2", ALL_DTYPES) + def test_inplace_dtype(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = dpnp.array(a), dpnp.array(b) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a -= b + ia -= ib + assert_dtype_allclose(ia, a) + else: + with pytest.raises(TypeError): + a -= b + + with pytest.raises(ValueError): + ia -= ib + + @pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)]) + def test_invalid_shape(self, shape): + a, b = dpnp.arange(10), dpnp.arange(10) + out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.subtract(a, b, out=out) + + @pytest.mark.parametrize("out", [4, (), [], (3, 7), [2, 4]]) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.subtract, a, 2, out) + assert_raises(TypeError, numpy.subtract, a.asnumpy(), 2, out) diff --git a/dpnp/tests/test_bitwise.py b/dpnp/tests/test_bitwise.py index 41f10c02354..220a7a1eacd 100644 --- a/dpnp/tests/test_bitwise.py +++ b/dpnp/tests/test_bitwise.py @@ -23,7 +23,7 @@ 3, ], ) -@pytest.mark.parametrize("dtype", [inp.bool, inp.int32, inp.int64]) +@pytest.mark.parametrize("dtype", [inp.bool] + get_integer_dtypes()) class TestBitwise: @staticmethod def array_or_scalar(xp, data, dtype=None): @@ -175,3 +175,114 @@ def test_invert_out(dtype): result = inp.invert(dp_a, out=dp_out) assert result is dp_out assert_dtype_allclose(result, expected) + + +@pytest.mark.parametrize("dtype1", [inp.bool] + get_integer_dtypes()) +@pytest.mark.parametrize("dtype2", [inp.bool] + get_integer_dtypes()) +class TestBitwiseInplace: + def test_bitwise_and(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = inp.array(a), inp.array(b) + + a &= True + ia &= True + assert_array_equal(ia, a) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a &= b + ia &= ib + assert_array_equal(ia, a) + else: + with pytest.raises(TypeError): + a &= b + + with pytest.raises(ValueError): + ia &= ib + + def test_bitwise_or(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = inp.array(a), inp.array(b) + + a |= False + ia |= False + assert_array_equal(ia, a) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a |= b + ia |= ib + assert_array_equal(ia, a) + else: + with pytest.raises(TypeError): + a |= b + + with pytest.raises(ValueError): + ia |= ib + + def test_bitwise_xor(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = inp.array(a), inp.array(b) + + a ^= False + ia ^= False + assert_array_equal(ia, a) + + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, -2, 0, 1, 0], dtype=dtype2) + ia, ib = inp.array(a), inp.array(b) + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a ^= b + ia ^= ib + assert_array_equal(ia, a) + else: + with pytest.raises(TypeError): + a ^= b + + with pytest.raises(ValueError): + ia ^= ib + + +@pytest.mark.parametrize("dtype1", get_integer_dtypes()) +@pytest.mark.parametrize("dtype2", get_integer_dtypes()) +class TestBitwiseShiftInplace: + def test_bitwise_left_shift(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, 2, 0, 1, 0], dtype=dtype2) + ia, ib = inp.array(a), inp.array(b) + + a <<= True + ia <<= True + assert_array_equal(ia, a) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a <<= b + ia <<= ib + assert_array_equal(ia, a) + else: + with pytest.raises(TypeError): + a <<= b + + with pytest.raises(ValueError): + ia <<= ib + + def test_bitwise_right_shift(self, dtype1, dtype2): + a = numpy.array([[-7, 6, -3, 2, -1], [0, -3, 4, 5, -6]], dtype=dtype1) + b = numpy.array([5, 2, 0, 1, 0], dtype=dtype2) + ia, ib = inp.array(a), inp.array(b) + + a >>= True + ia >>= True + assert_array_equal(ia, a) + + if numpy.can_cast(dtype2, dtype1, casting="same_kind"): + a >>= b + ia >>= ib + assert_array_equal(ia, a) + else: + with pytest.raises(TypeError): + a >>= b + + with pytest.raises(ValueError): + ia >>= ib diff --git a/dpnp/tests/test_mathematical.py b/dpnp/tests/test_mathematical.py index c19b3a8714f..500316ab21f 100644 --- a/dpnp/tests/test_mathematical.py +++ b/dpnp/tests/test_mathematical.py @@ -1274,42 +1274,6 @@ def test_return_type(self): assert type(res) is tuple -class TestHeavside: - @pytest.mark.parametrize("val", [0.5, 1.0]) - @pytest.mark.parametrize("dt", get_float_dtypes()) - def test_basic(self, val, dt): - a = numpy.array( - [[-30.0, -0.1, 0.0, 0.2], [7.5, numpy.nan, numpy.inf, -numpy.inf]], - dtype=dt, - ) - ia = dpnp.array(a) - - result = dpnp.heaviside(ia, val) - expected = numpy.heaviside(a, val) - assert_array_equal(result, expected) - - @pytest.mark.parametrize( - "a_dt", get_all_dtypes(no_none=True, no_complex=True) - ) - @pytest.mark.parametrize( - "b_dt", get_all_dtypes(no_none=True, no_complex=True) - ) - def test_both_input_as_arrays(self, a_dt, b_dt): - a = numpy.array([-1.5, 0, 2.0], dtype=a_dt) - b = numpy.array([-0, 0.5, 1.0], dtype=b_dt) - ia, ib = dpnp.array(a), dpnp.array(b) - - result = dpnp.heaviside(ia, ib) - expected = numpy.heaviside(a, b) - assert_array_equal(result, expected) - - @pytest.mark.parametrize("xp", [dpnp, numpy]) - @pytest.mark.parametrize("dt", get_complex_dtypes()) - def test_complex_dtype(self, xp, dt): - a = xp.array([-1.5, 0, 2.0], dtype=dt) - assert_raises((TypeError, ValueError), xp.heaviside, a, 0.5) - - @pytest.mark.parametrize("dtype1", get_all_dtypes()) @pytest.mark.parametrize("dtype2", get_all_dtypes()) @pytest.mark.parametrize( @@ -1400,86 +1364,6 @@ def test_complex(self, xp): assert_raises((ValueError, TypeError), xp.i0, a) -class TestLdexp: - @pytest.mark.parametrize("mant_dt", get_float_dtypes()) - @pytest.mark.parametrize("exp_dt", get_integer_dtypes()) - def test_basic(self, mant_dt, exp_dt): - if ( - numpy.lib.NumpyVersion(numpy.__version__) < "2.0.0" - and exp_dt == numpy.int64 - and numpy.dtype("l") != numpy.int64 - ): - pytest.skip("numpy.ldexp doesn't have a loop for the input types") - - mant = numpy.array(2.0, dtype=mant_dt) - exp = numpy.array(3, dtype=exp_dt) - imant, iexp = dpnp.array(mant), dpnp.array(exp) - - result = dpnp.ldexp(imant, iexp) - expected = numpy.ldexp(mant, exp) - assert_almost_equal(result, expected) - - def test_float_scalar(self): - a = numpy.array(3) - ia = dpnp.array(a) - - result = dpnp.ldexp(2.0, ia) - expected = numpy.ldexp(2.0, a) - assert_almost_equal(result, expected) - - @pytest.mark.parametrize("max_min", ["max", "min"]) - def test_overflow(self, max_min): - exp_val = getattr(numpy.iinfo(numpy.dtype("l")), max_min) - - result = dpnp.ldexp(dpnp.array(2.0), exp_val) - with numpy.errstate(over="ignore"): - # we can't use here numpy.array(2.0), because NumPy 2.0 will cast - # `exp_val` to int32 dtype then and `OverflowError` will be raised - expected = numpy.ldexp(2.0, exp_val) - assert_equal(result, expected) - - @pytest.mark.parametrize("val", [numpy.nan, numpy.inf, -numpy.inf]) - def test_nan_int_mant(self, val): - mant = numpy.array(val) - imant = dpnp.array(mant) - - result = dpnp.ldexp(imant, 5) - expected = numpy.ldexp(mant, 5) - assert_equal(result, expected) - - def test_zero_exp(self): - exp = numpy.array(0) - iexp = dpnp.array(exp) - - result = dpnp.ldexp(-2.5, iexp) - expected = numpy.ldexp(-2.5, exp) - assert_equal(result, expected) - - @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4]) - @pytest.mark.parametrize("dt", get_float_dtypes()) - def test_strides(self, stride, dt): - mant = numpy.array( - [0.125, 0.25, 0.5, 1.0, 1.0, 2.0, 4.0, 8.0], dtype=dt - ) - exp = numpy.array([3, 2, 1, 0, 0, -1, -2, -3], dtype="i") - out = numpy.zeros(8, dtype=dt) - imant, iexp, iout = dpnp.array(mant), dpnp.array(exp), dpnp.array(out) - - result = dpnp.ldexp(imant[::stride], iexp[::stride], out=iout[::stride]) - expected = numpy.ldexp(mant[::stride], exp[::stride], out=out[::stride]) - assert_equal(result, expected) - - def test_bool_exp(self): - result = dpnp.ldexp(3.7, dpnp.array(True)) - expected = numpy.ldexp(3.7, numpy.array(True)) - assert_almost_equal(result, expected) - - @pytest.mark.parametrize("xp", [dpnp, numpy]) - def test_uint64_exp(self, xp): - x = xp.array(4, dtype=numpy.uint64) - assert_raises((ValueError, TypeError), xp.ldexp, 7.3, x) - - @pytest.mark.parametrize( "rhs", [[[1, 2, 3], [4, 5, 6]], [2.0, 1.5, 1.0], 3, 0.3] ) @@ -1675,140 +1559,6 @@ def test_errors_diff_types(self, kwarg, value): dpnp.nan_to_num(ia, **{kwarg: value}) -class TestNextafter: - @pytest.mark.parametrize("dt", get_float_dtypes()) - @pytest.mark.parametrize( - "val1, val2", - [ - pytest.param(1, 2), - pytest.param(1, 0), - pytest.param(1, 1), - ], - ) - def test_float(self, val1, val2, dt): - v1 = numpy.array(val1, dtype=dt) - v2 = numpy.array(val2, dtype=dt) - iv1, iv2 = dpnp.array(v1), dpnp.array(v2) - - result = dpnp.nextafter(iv1, iv2) - expected = numpy.nextafter(v1, v2) - assert_equal(result, expected) - - @pytest.mark.parametrize("dt", get_float_dtypes()) - def test_float_nan(self, dt): - a = numpy.array(1, dtype=dt) - ia = dpnp.array(a) - - result = dpnp.nextafter(ia, dpnp.nan) - expected = numpy.nextafter(a, numpy.nan) - assert_equal(result, expected) - - result = dpnp.nextafter(dpnp.nan, ia) - expected = numpy.nextafter(numpy.nan, a) - assert_equal(result, expected) - - @pytest.mark.parametrize("val", [0x7C00, 0x8000], ids=["val1", "val2"]) - def test_f16_strides(self, val): - a = numpy.arange(val, dtype=numpy.uint16).astype(numpy.float16) - hinf = numpy.array((numpy.inf,), dtype=numpy.float16) - ia, ihinf = dpnp.array(a), dpnp.array(hinf) - - result = dpnp.nextafter(ia[:-1], ihinf) - expected = numpy.nextafter(a[:-1], hinf) - assert_equal(result, expected) - - result = dpnp.nextafter(ia[0], -ihinf) - expected = numpy.nextafter(a[0], -hinf) - assert_equal(result, expected) - - result = dpnp.nextafter(ia[1:], -ihinf) - expected = numpy.nextafter(a[1:], -hinf) - assert_equal(result, expected) - - @pytest.mark.parametrize("val", [0x7C00, 0x8000], ids=["val1", "val2"]) - def test_f16_array_inf(self, val): - a = numpy.arange(val, dtype=numpy.uint16).astype(numpy.float16) - hinf = numpy.array((numpy.inf,), dtype=numpy.float16) - ia, ihinf = dpnp.array(a), dpnp.array(hinf) - - result = dpnp.nextafter(ihinf, ia) - expected = numpy.nextafter(hinf, a) - assert_equal(result, expected) - - result = dpnp.nextafter(-ihinf, ia) - expected = numpy.nextafter(-hinf, a) - assert_equal(result, expected) - - @pytest.mark.parametrize( - "sign1, sign2", - [ - pytest.param(1, 1), - pytest.param(1, -1), - pytest.param(-1, 1), - pytest.param(-1, -1), - ], - ) - def test_f16_inf(self, sign1, sign2): - hinf1 = numpy.array((sign1 * numpy.inf,), dtype=numpy.float16) - hinf2 = numpy.array((sign2 * numpy.inf,), dtype=numpy.float16) - ihinf1, ihinf2 = dpnp.array(hinf1), dpnp.array(hinf2) - - result = dpnp.nextafter(ihinf1, ihinf2) - expected = numpy.nextafter(hinf1, hinf2) - assert_equal(result, expected) - - @pytest.mark.parametrize("val", [0x7C00, 0x8000], ids=["val1", "val2"]) - def test_f16_array_nan(self, val): - a = numpy.arange(val, dtype=numpy.uint16).astype(numpy.float16) - nan = numpy.array((numpy.nan,), dtype=numpy.float16) - ia, inan = dpnp.array(a), dpnp.array(nan) - - result = dpnp.nextafter(ia, inan) - expected = numpy.nextafter(a, nan) - assert_equal(result, expected) - - result = dpnp.nextafter(inan, ia) - expected = numpy.nextafter(nan, a) - assert_equal(result, expected) - - @pytest.mark.parametrize( - "val1, val2", - [ - pytest.param(numpy.nan, numpy.nan), - pytest.param(numpy.inf, numpy.nan), - pytest.param(numpy.nan, numpy.inf), - ], - ) - def test_f16_inf_nan(self, val1, val2): - v1 = numpy.array((val1,), dtype=numpy.float16) - v2 = numpy.array((val2,), dtype=numpy.float16) - iv1, iv2 = dpnp.array(v1), dpnp.array(v2) - - result = dpnp.nextafter(iv1, iv2) - expected = numpy.nextafter(v1, v2) - assert_equal(result, expected) - - @pytest.mark.parametrize( - "val, scalar", - [ - pytest.param(65504, -numpy.inf), - pytest.param(-65504, numpy.inf), - pytest.param(numpy.inf, 0), - pytest.param(-numpy.inf, 0), - pytest.param(0, numpy.nan), - pytest.param(numpy.nan, 0), - ], - ) - def test_f16_corner_values_with_scalar(self, val, scalar): - a = numpy.array(val, dtype=numpy.float16) - ia = dpnp.array(a) - scalar = numpy.float16(scalar) - - result = dpnp.nextafter(ia, scalar) - expected = numpy.nextafter(a, scalar) - assert_equal(result, expected) - - class TestProd: @pytest.mark.parametrize("axis", [None, 0, 1, -1, 2, -2, (1, 2), (0, -2)]) @pytest.mark.parametrize("keepdims", [False, True]) @@ -1915,64 +1665,6 @@ def test_prod_Error(self): dpnp.prod(ia, initial=6) -class TestRationalFunctions: - @pytest.mark.parametrize("func", ["gcd", "lcm"]) - @pytest.mark.parametrize("dt1", get_integer_dtypes()) - @pytest.mark.parametrize("dt2", get_integer_dtypes()) - def test_basic(self, func, dt1, dt2): - a = numpy.array([12, 120], dtype=dt1) - b = numpy.array([20, 120], dtype=dt2) - ia, ib = dpnp.array(a), dpnp.array(b) - - expected = getattr(numpy, func)(a, b) - result = getattr(dpnp, func)(ia, ib) - assert_array_equal(result, expected) - - @pytest.mark.parametrize("func", ["gcd", "lcm"]) - @pytest.mark.parametrize("dt", get_integer_dtypes()) - def test_broadcasting(self, func, dt): - a = numpy.arange(6, dtype=dt) - ia = dpnp.array(a) - b = 20 - - expected = getattr(numpy, func)(a, b) - result = getattr(dpnp, func)(ia, b) - assert_array_equal(result, expected) - - @pytest.mark.parametrize("dt", [numpy.int32, numpy.int64]) - def test_gcd_overflow(self, dt): - a = dt(numpy.iinfo(dt).min) # negative power of two - ia = dpnp.array(a) - q = -(a // 4) - - # verify that we don't overflow when taking abs(x) - # not relevant for lcm, where the result is unrepresentable anyway - expected = numpy.gcd(a, q) - result = dpnp.gcd(ia, q) - assert_array_equal(result, expected) - - def test_lcm_overflow(self): - big = numpy.int32(numpy.iinfo(numpy.int32).max // 11) - a, b = 2 * big, 5 * big - ia, ib = dpnp.array(a), dpnp.array(b) - - # verify that we don't overflow when a*b does overflow - expected = numpy.lcm(a, b) - result = dpnp.lcm(ia, ib) - assert_array_equal(result, expected) - - @pytest.mark.parametrize("func", ["gcd", "lcm"]) - @pytest.mark.parametrize("xp", [dpnp, numpy]) - def test_inf_and_nan(self, func, xp): - inf = xp.array([xp.inf]) - assert_raises((TypeError, ValueError), getattr(xp, func), inf, 1) - assert_raises((TypeError, ValueError), getattr(xp, func), 1, inf) - assert_raises((TypeError, ValueError), getattr(xp, func), xp.nan, inf) - assert_raises( - (TypeError, ValueError), getattr(xp, func), 4, float(xp.inf) - ) - - class TestRealIfClose: @pytest.mark.parametrize("dt", get_all_dtypes(no_none=True)) def test_basic(self, dt): @@ -2753,347 +2445,6 @@ def test_invalid_shape(self, func_params, shape): getattr(dpnp, func_name)(dp_array, out=dp_out) -class TestAdd: - @pytest.mark.parametrize("dtype", get_all_dtypes()) - def test_add(self, dtype): - np_array1, np_array2, expected = _get_numpy_arrays_2in_1out( - "add", dtype, [-5, 5, 10] - ) - - dp_array1 = dpnp.array(np_array1) - dp_array2 = dpnp.array(np_array2) - dp_out = dpnp.empty(expected.shape, dtype=dtype) - result = dpnp.add(dp_array1, dp_array2, out=dp_out) - - assert result is dp_out - assert_dtype_allclose(result, expected) - - @pytest.mark.parametrize("dtype", get_all_dtypes()) - def test_out_overlap(self, dtype): - size = 1 if dtype == dpnp.bool else 15 - dp_a = dpnp.arange(2 * size, dtype=dtype) - dpnp.add(dp_a[size::], dp_a[::2], out=dp_a[:size:]) - - np_a = numpy.arange(2 * size, dtype=dtype) - numpy.add(np_a[size::], np_a[::2], out=np_a[:size:]) - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True)) - def test_inplace_strides(self, dtype): - size = 21 - np_a = numpy.arange(size, dtype=dtype) - np_a[::3] += 4 - - dp_a = dpnp.arange(size, dtype=dtype) - dp_a[::3] += 4 - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] - ) - def test_invalid_shape(self, shape): - dp_array1 = dpnp.arange(10) - dp_array2 = dpnp.arange(10) - dp_out = dpnp.empty(shape) - - with pytest.raises(ValueError): - dpnp.add(dp_array1, dp_array2, out=dp_out) - - @pytest.mark.parametrize( - "out", - [4, (), [], (3, 7), [2, 4]], - ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], - ) - def test_invalid_out(self, out): - a = dpnp.arange(10) - - assert_raises(TypeError, dpnp.add, a, 2, out) - assert_raises(TypeError, numpy.add, a.asnumpy(), 2, out) - - -class TestDivide: - @pytest.mark.usefixtures("suppress_divide_invalid_numpy_warnings") - @pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True)) - def test_divide(self, dtype): - np_array1, np_array2, expected = _get_numpy_arrays_2in_1out( - "divide", dtype, [-5, 5, 10] - ) - - dp_array1 = dpnp.array(np_array1) - dp_array2 = dpnp.array(np_array2) - out_dtype = _get_output_data_type(dtype) - dp_out = dpnp.empty(expected.shape, dtype=out_dtype) - result = dpnp.divide(dp_array1, dp_array2, out=dp_out) - - assert result is dp_out - assert_dtype_allclose(result, expected) - - @pytest.mark.usefixtures("suppress_divide_invalid_numpy_warnings") - @pytest.mark.parametrize("dtype", get_float_complex_dtypes()) - def test_out_overlap(self, dtype): - size = 15 - dp_a = dpnp.arange(2 * size, dtype=dtype) - dpnp.divide(dp_a[size::], dp_a[::2], out=dp_a[:size:]) - - np_a = numpy.arange(2 * size, dtype=dtype) - numpy.divide(np_a[size::], np_a[::2], out=np_a[:size:]) - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize("dtype", get_float_complex_dtypes()) - def test_inplace_strides(self, dtype): - size = 21 - np_a = numpy.arange(size, dtype=dtype) - np_a[::3] /= 4 - - dp_a = dpnp.arange(size, dtype=dtype) - dp_a[::3] /= 4 - - assert_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] - ) - def test_invalid_shape(self, shape): - dp_array1 = dpnp.arange(10) - dp_array2 = dpnp.arange(5, 15) - dp_out = dpnp.empty(shape) - - with pytest.raises(ValueError): - dpnp.divide(dp_array1, dp_array2, out=dp_out) - - @pytest.mark.parametrize( - "out", - [4, (), [], (3, 7), [2, 4]], - ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], - ) - def test_invalid_out(self, out): - a = dpnp.arange(10) - - assert_raises(TypeError, dpnp.divide, a, 2, out) - assert_raises(TypeError, numpy.divide, a.asnumpy(), 2, out) - - -class TestFmaxFmin: - @pytest.mark.skipif(not has_support_aspect16(), reason="no fp16 support") - @pytest.mark.parametrize("func", ["fmax", "fmin"]) - def test_half(self, func): - a = numpy.array([0, 1, 2, 4, 2], dtype=numpy.float16) - b = numpy.array([-2, 5, 1, 4, 3], dtype=numpy.float16) - c = numpy.array([0, -1, -numpy.inf, numpy.nan, 6], dtype=numpy.float16) - ia, ib, ic = dpnp.array(a), dpnp.array(b), dpnp.array(c) - - result = getattr(dpnp, func)(ia, ib) - expected = getattr(numpy, func)(a, b) - assert_equal(result, expected) - - result = getattr(dpnp, func)(ib, ic) - expected = getattr(numpy, func)(b, c) - assert_equal(result, expected) - - @pytest.mark.parametrize("func", ["fmax", "fmin"]) - @pytest.mark.parametrize("dtype", get_float_dtypes()) - def test_float_nans(self, func, dtype): - a = numpy.array([0, numpy.nan, numpy.nan], dtype=dtype) - b = numpy.array([numpy.nan, 0, numpy.nan], dtype=dtype) - ia, ib = dpnp.array(a), dpnp.array(b) - - result = getattr(dpnp, func)(ia, ib) - expected = getattr(numpy, func)(a, b) - assert_equal(result, expected) - - @pytest.mark.parametrize("func", ["fmax", "fmin"]) - @pytest.mark.parametrize("dtype", get_complex_dtypes()) - @pytest.mark.parametrize( - "nan_val", - [ - complex(numpy.nan, 0), - complex(0, numpy.nan), - complex(numpy.nan, numpy.nan), - ], - ids=["nan+0j", "nanj", "nan+nanj"], - ) - def test_complex_nans(self, func, dtype, nan_val): - a = numpy.array([0, nan_val, nan_val], dtype=dtype) - b = numpy.array([nan_val, 0, nan_val], dtype=dtype) - ia, ib = dpnp.array(a), dpnp.array(b) - - result = getattr(dpnp, func)(ia, ib) - expected = getattr(numpy, func)(a, b) - assert_equal(result, expected) - - @pytest.mark.parametrize("func", ["fmax", "fmin"]) - @pytest.mark.parametrize("dtype", get_float_dtypes(no_float16=False)) - def test_precision(self, func, dtype): - dtmin = numpy.finfo(dtype).min - dtmax = numpy.finfo(dtype).max - d1 = dtype(0.1) - d1_next = numpy.nextafter(d1, numpy.inf) - - test_cases = [ - # v1 v2 - (dtmin, -numpy.inf), - (dtmax, -numpy.inf), - (d1, d1_next), - (dtmax, numpy.nan), - ] - - for v1, v2 in test_cases: - a = numpy.array([v1]) - b = numpy.array([v2]) - ia, ib = dpnp.array(a), dpnp.array(b) - - result = getattr(dpnp, func)(ia, ib) - expected = getattr(numpy, func)(a, b) - assert_allclose(result, expected) - - -class TestFloorDivide: - @pytest.mark.usefixtures("suppress_divide_numpy_warnings") - @pytest.mark.parametrize( - "dtype", get_all_dtypes(no_bool=True, no_complex=True) - ) - def test_floor_divide(self, dtype): - np_array1, np_array2, expected = _get_numpy_arrays_2in_1out( - "floor_divide", dtype, [-5, 5, 10] - ) - - dp_array1 = dpnp.array(np_array1) - dp_array2 = dpnp.array(np_array2) - dp_out = dpnp.empty(expected.shape, dtype=dtype) - result = dpnp.floor_divide(dp_array1, dp_array2, out=dp_out) - - assert result is dp_out - assert_dtype_allclose(result, expected) - - @pytest.mark.usefixtures("suppress_divide_numpy_warnings") - @pytest.mark.parametrize( - "dtype", get_all_dtypes(no_bool=True, no_complex=True) - ) - def test_out_overlap(self, dtype): - size = 15 - dp_a = dpnp.arange(2 * size, dtype=dtype) - dpnp.floor_divide(dp_a[size::], dp_a[::2], out=dp_a[:size:]) - - # original - np_a = numpy.arange(2 * size, dtype=dtype) - numpy.floor_divide(np_a[size::], np_a[::2], out=np_a[:size:]) - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "dtype", get_all_dtypes(no_bool=True, no_none=True, no_complex=True) - ) - def test_inplace_strides(self, dtype): - size = 21 - - np_a = numpy.arange(size, dtype=dtype) - np_a[::3] //= 4 - - dp_a = dpnp.arange(size, dtype=dtype) - dp_a[::3] //= 4 - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] - ) - def test_invalid_shape(self, shape): - dp_array1 = dpnp.arange(10) - dp_array2 = dpnp.arange(5, 15) - dp_out = dpnp.empty(shape) - - with pytest.raises(ValueError): - dpnp.floor_divide(dp_array1, dp_array2, out=dp_out) - - @pytest.mark.parametrize( - "out", - [4, (), [], (3, 7), [2, 4]], - ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], - ) - def test_invalid_out(self, out): - a = dpnp.arange(10) - assert_raises(TypeError, dpnp.floor_divide, a, 2, out) - assert_raises(TypeError, numpy.floor_divide, a.asnumpy(), 2, out) - - -class TestBoundFuncs: - @pytest.fixture( - params=[ - {"func_name": "fmax", "input_values": [-5, 5, 10]}, - {"func_name": "fmin", "input_values": [-5, 5, 10]}, - {"func_name": "maximum", "input_values": [-5, 5, 10]}, - {"func_name": "minimum", "input_values": [-5, 5, 10]}, - ], - ids=[ - "fmax", - "fmin", - "maximum", - "minimum", - ], - ) - def func_params(self, request): - return request.param - - @pytest.mark.parametrize( - "dtype", get_all_dtypes(no_bool=True, no_complex=True) - ) - def test_out(self, func_params, dtype): - func_name = func_params["func_name"] - input_values = func_params["input_values"] - np_array1, np_array2, expected = _get_numpy_arrays_2in_1out( - func_name, dtype, input_values - ) - - dp_array1 = dpnp.array(np_array1) - dp_array2 = dpnp.array(np_array2) - dp_out = dpnp.empty(expected.shape, dtype=dtype) - result = getattr(dpnp, func_name)(dp_array1, dp_array2, out=dp_out) - - assert result is dp_out - assert_dtype_allclose(result, expected) - - @pytest.mark.parametrize( - "dtype", get_all_dtypes(no_bool=True, no_complex=True) - ) - def test_out_overlap(self, func_params, dtype): - func_name = func_params["func_name"] - size = 15 - dp_a = dpnp.arange(2 * size, dtype=dtype) - getattr(dpnp, func_name)(dp_a[size::], dp_a[::2], out=dp_a[:size:]) - - np_a = numpy.arange(2 * size, dtype=dtype) - getattr(numpy, func_name)(np_a[size::], np_a[::2], out=np_a[:size:]) - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] - ) - def test_invalid_shape(self, func_params, shape): - func_name = func_params["func_name"] - dp_array1 = dpnp.arange(10) - dp_array2 = dpnp.arange(10) - dp_out = dpnp.empty(shape) - - with pytest.raises(ValueError): - getattr(dpnp, func_name)(dp_array1, dp_array2, out=dp_out) - - @pytest.mark.parametrize( - "out", - [4, (), [], (3, 7), [2, 4]], - ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], - ) - def test_invalid_out(self, func_params, out): - func_name = func_params["func_name"] - a = dpnp.arange(10) - - assert_raises(TypeError, getattr(dpnp, func_name), a, 2, out) - assert_raises(TypeError, getattr(numpy, func_name), a.asnumpy(), 2, out) - - class TestHypot: @pytest.mark.parametrize( "dtype", get_all_dtypes(no_bool=True, no_complex=True) @@ -3286,237 +2637,6 @@ def test_reduce_hypot_out_dtype(self, arr_dt, out_dt, dtype): assert result is iout -class TestMultiply: - @pytest.mark.parametrize("dtype", get_all_dtypes()) - def test_multiply(self, dtype): - np_array1, np_array2, expected = _get_numpy_arrays_2in_1out( - "multiply", dtype, [0, 10, 10] - ) - - dp_array1 = dpnp.array(np_array1) - dp_array2 = dpnp.array(np_array2) - dp_out = dpnp.empty(expected.shape, dtype=dtype) - result = dpnp.multiply(dp_array1, dp_array2, out=dp_out) - - assert result is dp_out - assert_dtype_allclose(result, expected) - - @pytest.mark.parametrize("dtype", get_all_dtypes()) - def test_out_overlap(self, dtype): - size = 1 if dtype == dpnp.bool else 15 - dp_a = dpnp.arange(2 * size, dtype=dtype) - dpnp.multiply(dp_a[size::], dp_a[::2], out=dp_a[:size:]) - - np_a = numpy.arange(2 * size, dtype=dtype) - numpy.multiply(np_a[size::], np_a[::2], out=np_a[:size:]) - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True)) - def test_inplace_strides(self, dtype): - size = 21 - np_a = numpy.arange(size, dtype=dtype) - np_a[::3] *= 4 - - dp_a = dpnp.arange(size, dtype=dtype) - dp_a[::3] *= 4 - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] - ) - def test_invalid_shape(self, shape): - dp_array1 = dpnp.arange(10) - dp_array2 = dpnp.arange(10) - dp_out = dpnp.empty(shape) - - with pytest.raises(ValueError): - dpnp.multiply(dp_array1, dp_array2, out=dp_out) - - @pytest.mark.parametrize( - "out", - [4, (), [], (3, 7), [2, 4]], - ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], - ) - def test_invalid_out(self, out): - a = dpnp.arange(10) - - assert_raises(TypeError, dpnp.multiply, a, 2, out) - assert_raises(TypeError, numpy.multiply, a.asnumpy(), 2, out) - - -class TestPower: - @pytest.mark.parametrize("val_type", get_all_dtypes(no_none=True)) - @pytest.mark.parametrize("data_type", get_all_dtypes()) - @pytest.mark.parametrize("val", [1.5, 1, 5], ids=["1.5", "1", "5"]) - @pytest.mark.parametrize( - "array", - [ - [[0, 0], [0, 0]], - [[1, 2], [1, 2]], - [[1, 2], [3, 4]], - [[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]], - [ - [[[1, 2], [3, 4]], [[1, 2], [2, 1]]], - [[[1, 3], [3, 1]], [[0, 1], [1, 3]]], - ], - ], - ids=[ - "[[0, 0], [0, 0]]", - "[[1, 2], [1, 2]]", - "[[1, 2], [3, 4]]", - "[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]", - "[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]", - ], - ) - def test_basic(self, array, val, data_type, val_type): - np_a = numpy.array(array, dtype=data_type) - dpnp_a = dpnp.array(array, dtype=data_type) - val_ = val_type(val) - - result = dpnp.power(dpnp_a, val_) - expected = numpy.power(np_a, val_) - assert_allclose(expected, result, rtol=1e-6) - - @pytest.mark.parametrize("dtype", get_all_dtypes()) - def test_power(self, dtype): - numpy.random.seed(42) - np_array1, np_array2, expected = _get_numpy_arrays_2in_1out( - "power", dtype, [0, 10, 10] - ) - - dp_array1 = dpnp.array(np_array1) - dp_array2 = dpnp.array(np_array2) - out_dtype = numpy.int8 if dtype == numpy.bool_ else dtype - dp_out = dpnp.empty(expected.shape, dtype=out_dtype) - result = dpnp.power(dp_array1, dp_array2, out=dp_out) - - assert result is dp_out - assert_dtype_allclose(result, expected) - - @pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True)) - def test_out_overlap(self, dtype): - size = 1 if dtype == dpnp.bool else 10 - dp_a = dpnp.arange(2 * size, dtype=dtype) - dpnp.power(dp_a[size::], dp_a[::2], out=dp_a[:size:]), - - np_a = numpy.arange(2 * size, dtype=dtype) - numpy.power(np_a[size::], np_a[::2], out=np_a[:size:]) - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "dtype", get_all_dtypes(no_bool=True, no_none=True) - ) - def test_inplace_strided_out(self, dtype): - size = 5 - np_a = numpy.arange(2 * size, dtype=dtype) - np_a[::3] **= 3 - - dp_a = dpnp.arange(2 * size, dtype=dtype) - dp_a[::3] **= 3 - - assert_dtype_allclose(dp_a, np_a) - - @pytest.mark.parametrize( - "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] - ) - def test_invalid_shape(self, shape): - dp_array1 = dpnp.arange(10) - dp_array2 = dpnp.arange(10) - dp_out = dpnp.empty(shape) - - with pytest.raises(ValueError): - dpnp.power(dp_array1, dp_array2, out=dp_out) - - @pytest.mark.parametrize( - "out", - [4, (), [], (3, 7), [2, 4]], - ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], - ) - def test_invalid_out(self, out): - a = dpnp.arange(10) - - assert_raises(TypeError, dpnp.power, a, 2, out) - assert_raises(TypeError, numpy.power, a.asnumpy(), 2, out) - - @pytest.mark.usefixtures("suppress_invalid_numpy_warnings") - def test_complex_values(self): - np_arr = numpy.array([0j, 1 + 1j, 0 + 2j, 1 + 2j, numpy.nan, numpy.inf]) - dp_arr = dpnp.array(np_arr) - func = lambda x: x**2 - - assert_dtype_allclose(func(dp_arr), func(np_arr)) - - @pytest.mark.parametrize("val", [0, 1], ids=["0", "1"]) - @pytest.mark.parametrize("dtype", [dpnp.int32, dpnp.int64]) - def test_integer_power_of_0_or_1(self, val, dtype): - np_arr = numpy.arange(10, dtype=dtype) - dp_arr = dpnp.array(np_arr) - func = lambda x: val**x - - assert_equal(func(np_arr), func(dp_arr)) - - @pytest.mark.parametrize("dtype", [dpnp.int32, dpnp.int64]) - def test_integer_to_negative_power(self, dtype): - a = dpnp.arange(2, 10, dtype=dtype) - b = dpnp.full(8, -2, dtype=dtype) - zeros = dpnp.zeros(8, dtype=dtype) - ones = dpnp.ones(8, dtype=dtype) - - assert_array_equal(ones ** (-2), zeros) - assert_equal( - a ** (-3), zeros - ) # positive integer to negative integer power - assert_equal( - b ** (-4), zeros - ) # negative integer to negative integer power - - def test_float_to_inf(self): - a = numpy.array( - [1, 1, 2, 2, -2, -2, numpy.inf, -numpy.inf], dtype=numpy.float32 - ) - b = numpy.array( - [ - numpy.inf, - -numpy.inf, - numpy.inf, - -numpy.inf, - numpy.inf, - -numpy.inf, - numpy.inf, - -numpy.inf, - ], - dtype=numpy.float32, - ) - numpy_res = a**b - dpnp_res = dpnp.array(a) ** dpnp.array(b) - - assert_allclose(numpy_res, dpnp_res.asnumpy()) - - @pytest.mark.parametrize("shape", [(), (3, 2)], ids=["()", "(3, 2)"]) - @pytest.mark.parametrize("dtype", get_all_dtypes()) - def test_power_scalar(self, shape, dtype): - np_a = numpy.ones(shape, dtype=dtype) - dpnp_a = dpnp.ones(shape, dtype=dtype) - - result = 4.2**dpnp_a**-1.3 - expected = 4.2**np_a**-1.3 - assert_allclose(result, expected, rtol=1e-6) - - result **= dpnp_a - expected **= np_a - assert_allclose(result, expected, rtol=1e-6) - - def test_alias(self): - a = dpnp.arange(10) - res1 = dpnp.power(a, 3) - res2 = dpnp.pow(a, 3) - - assert_array_equal(res1, res2) - - @pytest.mark.parametrize( "dtype", get_all_dtypes(no_bool=True, no_none=True, no_complex=True) )