-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcore.pl
578 lines (478 loc) · 15.7 KB
/
core.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
:- use_module(library(lists)) .
:- use_module(library(debug)) .
:- dynamic neg/3 .
:- dynamic brake/0 .
:- dynamic answer/1 .
:- dynamic '<http://www.w3.org/2000/10/swap/log#onNegativeSurface>'/3.
:- dynamic '<http://www.w3.org/2000/10/swap/log#onNegativeAnswerSurface>'/3.
% Latar - RDF Surfaces playground
% (c) Patrick Hochstenbach 2022-2023
% From (a,b,c,..) <-> [a,b,c,...]
conj_list(true, []) :-
!.
conj_list(A, [A]) :-
A \= (_, _),
A \= false,
!.
conj_list((A, B), [A|C]) :-
conj_list(B, C).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% L-triples %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% An l-triple is a pred(level,subject,object) expression
ltriple(T,Level,Predicate,Subject,Object) :-
nth0(0,L,Predicate),
nth0(1,L,Level),
nth0(2,L,Subject),
nth0(3,L,Object),
length(L,4),
T =.. L,
integer(Level).
is_ltriple(T) :-
ltriple(T,_,_,_,_).
% Return the level of an l-triple
level(A,B) :-
ltriple(A,B,_,_,_).
% Return the predicate of an l-triple
predicate(A,B) :-
ltriple(A,_,B,_,_).
% Return the subject of an l-triple
subject(A,B) :-
ltriple(A,_,_,B,_).
% Return the object of an l-triple
object(A,B) :-
ltriple(A,_,_,_,B).
% Lift the level of a ltriple by one
lift(A,B) :-
nonvar(A),
var(B),
ltriple(A,L,P,S,O),
Ln is L + 1,
ltriple(B,Ln,P,S,O).
lift(A,B) :-
var(A),
nonvar(B),
ltriple(B,Ln,P,S,O),
L is Ln - 1,
ltriple(A,L,P,S,O).
% Drop the level of a statement by one
drop(A,B) :-
lift(B,A).
% Apply a lift or drop to a (nested) statement
levelapply(Op,A,B) :-
% Apply the level function on the A statement itself
Do =.. [Op,A,X] ,
call_if_exists(Do) ,
level(X,Level) ,
% Apply it on the parts
subject(X,S),
( levelapply(Op,S,SN) -> true ; SN = S ) ,
predicate(X,P),
( levelapply(Op,P,PN) -> true ; PN = P ) ,
object(X,O),
( levelapply(Op,O,ON) -> true ; ON = O ) ,
B =.. [PN,Level,SN,ON].
% Triple to l-triple conversion
triple2ltriple(A,B) :-
nonvar(A),
var(B),
triple-ltriple(0,A,B).
triple2ltriple(A,B) :-
var(A),
nonvar(B),
ltriple-triple(B,A).
triple2ltriple(A,B) :-
var(A),
var(B),
triple-ltriple(0,A,B).
% Create an l-triple from a (possible nested) triple
triple-ltriple(Level,A,B) :-
nonvar(A),
A =.. L,
length(L,3),
nth0(0,L,P),
nth0(1,L,S),
nth0(2,L,O),
% Deeper nested triples have a higher level
LevelUp is Level + 1 ,
triple-ltripleG(LevelUp,S,Sn),
triple-ltripleG(LevelUp,P,Pn),
triple-ltripleG(LevelUp,O,On),
% We know all that we need to know and can create the l-triple
!,
ltriple(B,Level,Pn,Sn,On).
triple-ltripleG(Level,A,B) :-
conj_list(A,L),
triple-ltripleG(Level,L,[],Ln),
reverse(Ln,Lnn),
conj_list(B,Lnn).
triple-ltripleG(_,[],Acc,Acc).
triple-ltripleG(Level,[H|T],Acc,B) :-
( is_triple(H) ->
triple-ltriple(Level,H,Hn),
triple-ltripleG(Level,T,[Hn|Acc],B)
;
triple-ltripleG(Level,T,[H|Acc],B)
).
% create a triple from a (possible nested) l-triple
ltriple-triple(A,B) :-
ltriple(A,_,Predicate,Subject,Object),
( is_triple(Subject) ->
ltriple-triple(Subject,SubjectNew) ; SubjectNew = Subject
),
( is_triple(Predicate) ->
ltriple-triple(Predicate,PredicateNew) ; PredicateNew = Predicate
),
( is_triple(Object) ->
ltriple-triple(Object,ObjectNew) ; ObjectNew = Object
),
B =.. [PredicateNew,SubjectNew,ObjectNew].
% Turn l-triple graffiti references into one with prolog variables
% with
% Gr - the graffiti list of a negative surface
% A - the object of a negative surface
% B - a new object with blank node references turned into prolog variables
% If the Gr is not a list, then we don't need to do anything
make_graffiti(Gr,A,A) :-
\+ is_list(Gr).
make_graffiti(Gr,A,B) :-
% graffiti needs to be a list
is_list(Gr),
% Turn the graffiti list into a prolog variable list
make_var(Gr,GrVar),
make_graffiti(Gr,A,GrVar,B).
make_graffiti(Gr,A,GrVar,B) :-
conj_list(A,As),
make_graffiti([],As,Gr,GrVar,New),
reverse(New,NewR),
conj_list(B,NewR).
make_graffiti(Acc,[],_,_,Acc).
make_graffiti(Acc,[H|T],Gr,GrVar,B) :-
is_triple_or_formula(H),
level(H,L),
subject(H,S),
predicate(H,P),
object(H,O),
% Process nested formulas also
( is_triple_or_formula(S) ->
make_graffiti(Gr,S,GrVar,SN)
;
( graffiti_expand(Gr,GrVar,S,SN) -> true ; SN = S )
),
% Process nested formulas also
( is_triple_or_formula(O) ->
make_graffiti(Gr,O,GrVar,ON)
;
( graffiti_expand(Gr,GrVar,O,ON) -> true ; ON = O )
),
ltriple(New,L,P,SN,ON),
make_graffiti([New|Acc],T,Gr,GrVar,B).
% Expand a blank node reference to the graffiti thereof
graffiti_expand(P,PVar,A,B) :-
nth0(I,P,A),
nth0(I,PVar,B).
% True when A looks like a triple (compound, not a list, not a literal)
is_triple(A) :-
compound(A),
\+is_list(A),
A =.. L ,
nth0(0,L,Type),
dif(Type,literal).
% True when A looks like a triple or formula
is_triple_or_formula(A) :-
conj_list(A,B),
nth0(0,B,C),
is_triple(C).
% True when A is a negative surface
is_negative_surface(A) :-
predicate(A,Pred),
atom_string(Pred,neg).
% Make variables for a list of graffiti
make_var(Ls,Vs) :-
length(Ls,N) ,
% Generate a list of length N with variables
length(Vs,N) .
% Make a new variable
make_var(A) :-
length([A|_],1) .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PEIRCE Algorithm %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
surface(negative,'<http://www.w3.org/2000/10/swap/log#onNegativeSurface>').
surface(construct,'<http://www.w3.org/2000/10/swap/log#onNegativeAnswerSurface>').
% Check if A is a surface
is_surface(A) :-
predicate(A,X),
surface(_,X).
% Generalize a surface by replacing the blank node graffiti by a variable.
% Turning:
% <surface>(Level,[H|T],Subject,Object)
% Into:
% <surface>(Level,_Variable,Subject,Object)
generalize_if_surface(A,B) :-
( is_surface(A) ->
make_surface(Surface,Level,_,Body,A),
( var(Body) ->
% If the body is a var then we have query that tries to match
% surfaces syntactically. E.g. () log:onNegativeSurface _:X
% Rplace the graffiti by a new catch all variable
make_var(VarGraffiti),
make_surface(Surface,Level,VarGraffiti,Body,B)
;
% If not, replace the graffiti by a new catch all variable
make_var(VarGraffiti),
generalize_if_surface(Body,BodyNew),
make_surface(Surface,Level,VarGraffiti,BodyNew,B)
)
;
B = A
).
% Create a surface statement from the parts
% - Surface - a surface type
% - Level - a level
% - Graffiti - list of blank node graffiti
% - Body - the body of the surface
% - Stmt - the resulting surface
make_surface(Surface,Level,Graffiti,Body,Stmt) :-
surface(Surface,S),
Stmt =.. [S,Level,Graffiti,Body].
% Assert a statement
iterate(Stmt) :-
assertz(Stmt).
% Assert a new surface
% - Surface a surface type
% - Level - a level
% - Graffiti - list of blank node graffiti
% - Body - surface subject
iterate(Surface,Level,Graffiti,Body) :-
surface(Surface,S),
Stmt =.. [S,Level,Graffiti,Body],
iterate(Stmt).
% Retract a statement
deiterate(Stmt) :-
( retract(Stmt) -> true ; true ).
% Retract a surface
% - Surface a surface type
% - Level - a level
% - Graffiti - list of blank node graffiti
% - Body - surface subject
deiterate(Surface,Level,Graffiti,Body) :-
surface(Surface,S),
Stmt =.. [S,Level,Graffiti,Body],
deiterate(Stmt).
% Remove in a level 1 surface copies of
% triples that exist on level 0
deiterate_procedure(Surface,_) :-
debug(info, "deiterate_procedure", []),
% Create a Stmt which represents a level 0 Surface with wildcard graffiti and body
% If Surface = negative this will create a Stmt which represents a negative surface
% on the Sheet of Assertion
make_surface(Surface,0,P,G,Stmt),
% Match this Stmt with everything we have in the knowledge base (query the database)
Stmt, % This will results in 0 or more matches (ltriple,...)
% Turn all the graffiti coreferences in the body of the surface into Prolog variables
% (if the graffiti P is not a list, then GPrime = G)
make_graffiti(P,G,GPrime),
% Turn the body of the surface (a conjunction of ltriples), into a list of ltriples
conj_list(GPrime,Gs),
% Remove matches with level 0
% The deiterate_procedure creates a new body without the ltriples that exist in
% the parent of the surface
deiterate_procedure(Gs,[],GsNew),
reverse(GsNew,T), % In order to keep the same order of ltriples as before (not really needed)
conj_list(GNew,T), % Create from the list again a conjunction of ltriples
debug(debug, "-deiterate: neg(~q,~q)", [P,GPrime]),
debug(trace, "-iterate: neg(~q,~q)" , [P,GNew]),
% Assert the new surface
deiterate(Surface,0,P,GPrime), % Remove the old version of the surface
iterate(Surface,0,P,GNew). % Insert the new version of the surface
deiterate_procedure([],Acc,Acc).
deiterate_procedure([H|T],Acc,B) :-
levelapply(drop,H,Hn),
% If we have a surface, ignore the graffiti ..(they should already have been turned into variables in previous steps)
% E.g. don't try to match
% <surface>(Level,['_:A'],Subject,Object)
% but
% <surface>(Level,_Whatever,Subject,Object)
generalize_if_surface(Hn,HnGeneral),
call_if_exists(HnGeneral),
deiterate_procedure(T,Acc,B).
deiterate_procedure([H|T],Acc,B) :-
levelapply(drop,H,Hn),
% If we have a surface, ignore the graffiti ..(they should already have been turned into variables in previous steps)
% E.g. don't try to match
% <surface>(Level,['_:A'],Subject,Object)
% but
% <surface>(Level,_Whatever,Subject,Object)
generalize_if_surface(Hn,HnGeneral),
not_exists(HnGeneral),
deiterate_procedure(T,[H|Acc],B).
% Scan for contradictions
% An empty surface is a contradiction
empty_surface_procedure(Surface) :-
make_surface(Surface,0,_,true,Stmt) ,
( call_if_exists(Stmt) ->
writeln('***contradicton detected***'),
throw(halt(2))
;
true
).
% Remove double ltiples in nested surfaces
double_to_one_procedure(Type) :-
debug(info, "double_to_one_procedure", []),
% Create a level 0 matcher
make_surface(Type,0,P,G,Surface),
% Find all ltriples on this surface
Surface , % This will result zero or more matches (ltriple,...)
% Create a uniq list
conj_list(G,Gl),
list_to_set(Gl,Gs),
conj_list(GNew,Gs),
(
dif(G,GNew) ->
debug(debug,"-double: removed double ltriples",[]),
deiterate(Type,0,P,G), % Remove the old version of the surface
iterate(Type,0,P,GNew) % Insert the new version of the surface
;
debug(debug,"-double: nothing found", [G])
).
% Remove double nested surfaces and assert the
% body of these surfaces, only when it is not already
% asserted
double_cut_procedure(OuterType,InnerType,Target) :-
debug(info, "double_cut_procedure", []),
% Create an Inner which matches a level 1 surface
make_surface(InnerType,1,InnerGraffiti,G,Inner),
% Create an Outer which matches a level 0 surface that contains Inner
make_surface(OuterType,0,OuterGraffiti,Inner,Outer),
% Find all these double nested surfaces in the knowledge base
Outer, % This will result zero or more matches (ltriple,...)
% Surfaces are only nested when the graffiti are lists
% whatever the content
is_list(InnerGraffiti),
is_list(OuterGraffiti),
% Surface are only nested when the object is an ltriple
is_ltriple(G),
debug(debug,"-cut: neg(neg(~q))", [G]),
% If we have such a double nested surfaces, get its body and create
% a new version of it but two levels up (closer to the top level)
levelapply(drop,G,X),
levelapply(drop,X,Gn),
% Remove the double nested surface
deiterate(Outer),
% Check if we need to assert the new "2-level up" ltriples on the answer surface
assert_if_answer(Gn,Target),
% Add the new "2-level up" ltiples to the knowledge base (if they don't exist yet)
( call_if_exists(Gn) ->
fail
;
iterate(Gn)
).
% Write to a surface.
% When we have a default target do nothing
% When we have an answer target add the Graph
assert_if_answer(_,default).
assert_if_answer(Graph,answer) :-
( call_if_exists(answer(Graph)) ->
fail
;
assertz(answer(Graph))
).
% call a goall only when the predicate exists and fail otherwise
call_if_exists(G) :-
current_predicate(_, G),
call(G).
% return true when the predicate does not exists (false otherwise)
not_exists(G) :-
\+current_predicate(_, G).
not_exists(G) :-
current_predicate(_, G),
( G -> fail ; true ).
% Peirce Abstract Machine is a combination of a deiteration
% of triples in negative surfaces with a double cut of
% nested negative surfaces
pam_default :-
debug(info, "pam_default", []),
% Remove any double ltriples in the negative surface
double_to_one_procedure(negative),
% Empty negative surfaces are an indication of a contradiction in the knowledge base
empty_surface_procedure(negative),
% Remove from the negative surfaces on top level all the l-triples that also exist
% on the top level
deiterate_procedure(negative,default),
% Turn double-nested negative surfaces on top level into assertions of their body
double_cut_procedure(negative,negative,default),
retract(brake),
fail.
pam_default :-
( brake ->
!
;
assertz(brake),
pam_default
).
pam_answer :-
debug(info, "pam_answer" , []),
empty_surface_procedure(negative),
deiterate_procedure(negative,answer),
double_cut_procedure(negative,construct,answer),
retract(brake),
fail.
pam_answer :-
( brake ->
!
;
assertz(brake),
pam_answer
).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parse the N3P file and load it into memory
load_n3p(File) :-
debug(info, "load_n3p(~q)", [File]),
open(File, read, In, [encoding(utf8)]) ,
repeat,
read_term(In,Term,[]),
( Term == end_of_file ->
!
;
process_term(Term) , fail
),
close(In).
% N3P terms are transformed into ltriples and loaded into the knowledge base
process_term(Term) :-
% Each n3p term is for the format:
% predicate(subject,object)
% where typically in RDF Surfaces the object can be a nested graph.
% When processing RDF Surfaces it is important to know the nesting level
% of triples. We introduce 'ltriple' is introduced as a n3p term with
% the nesting level included:
% predicate(level,subject,object)
triple2ltriple(Term,TermN),
% Assert this ltriple as a new fact in the the knowledge base (if it
% doesn't exist yet )
( call_if_exists(TermN) ->
fail
;
iterate(TermN)
).
% Run the Peirce Abstract Machine and write the inferences into the knowledge base
run_default :-
debug(info, "run_default",[]),
pam_default,
fail; true.
% Run the Peirce Abstract Machine and write the inferences to the standard output
run_answer :-
debug(info, "run_answer",[]),
pam_answer,
answer(Q),
triple2ltriple(QN,Q),
writeq(QN),
write('.\n'),
fail;
true.
% Main
run(Program) :-
debug(info, "program: ~q" , [Program]),
load_n3p(Program),
run_default,
run_answer.