-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathrun_hyper_search.py
52 lines (45 loc) · 2.14 KB
/
run_hyper_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import sys
import os
from ray import tune
from mwptoolkit.hyper_search import hyper_search_process
from mwptoolkit.utils.utils import read_json_data
sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), ".")))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', '-m', type=str, default='GTS', help='name of models')
parser.add_argument('--dataset', '-d', type=str, default='math23k', help='name of datasets')
parser.add_argument('--task_type', '-t', type=str, default='single_equation', help='name of tasks')
parser.add_argument('--search_parameter', '-s', type=str, action='append', default=[])
parser.add_argument('--search_file','-f',type=str,default=None)
args, _ = parser.parse_known_args()
config_dict = {}
parameter_dict = {}
if args.search_file != None:
search_parameter=read_json_data(args.search_file)
for parameter in search_parameter:
value = parameter.split('=')
space = eval(value[1])
if isinstance(space,list):
parameter_dict[value[0]] = tune.grid_search(space)
elif isinstance(space,tuple) and len(space)==2:
if space[0]==0 and space[1]==1:
parameter_dict[value[0]] = tune.uniform(space[0],space[1])
else:
parameter_dict[value[0]] = tune.loguniform(space[0],space[1])
else:
parameter_dict[value[0]] = space
search_parameter = args.search_parameter
for parameter in search_parameter:
value = parameter.split('=')
space = eval(value[1])
if isinstance(space,list):
parameter_dict[value[0]] = tune.grid_search(space)
elif isinstance(space,tuple) and len(space)==2:
if space[0]==0 and space==1:
parameter_dict[value[0]] = tune.uniform(space[0],space[1])
else:
parameter_dict[value[0]] = tune.loguniform(space[0],space[1])
else:
parameter_dict[value[0]] = space
hyper_search_process(args.model, args.dataset, args.task_type, parameter_dict, config_dict)