forked from diazale/gt-dimred
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathukbb_asian_plotting.Rmd
executable file
·118 lines (96 loc) · 3.36 KB
/
ukbb_asian_plotting.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
title: "UKBB plotting Asian populations"
author:
- name: Alex Diaz-Papkovich
affiliation:
- &cruk Quantitative Life Sciences, McGill University, Montreal, Canada
date: '`r format(Sys.Date(), "%Y-%B-%d")`'
output:
html_notebook:
df_print: paged
code_folding: show
toc: yes
toc_float:
collapsed: false
smooth_scroll: false
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Import libraries
```{r}
library(tidyverse)
library(ggplot2)
```
## Import the files
```{r}
data_path <- "/Volumes/Stockage/alex/ukbb_other/data/ukbb_asian_data.csv"
ukbb_asian_data <- read.csv(data_path)
```
## Recreate the original image from the jupyter notebook
```{r}
out_dir <- "/Volumes/Stockage/alex/ukbb_images/ggplot_for_export"
fname <- "Asthma_FullAsian_PC_QC_new_UMAP_PC5_NC2_NN15_MD05_201931173256"
h <- 10
w <- 6.49
s <- 0.5
a <- 0.6
# Colour palette from other projection
#original_pal <- c("#fcc5c0","#3f007d","#f768a1","#e377c2","#49006a","#ae017e")
# New colour palette to better distinguish groups
colour_pal <- c("#fcc5c0","#c7c7c7","#ff7f0e","#e377c2","#49006a","#2ca02c")
p_asian <- ggplot(data = ukbb_asian_data, aes(x=x_coords, y=y_coords, colour=eth_txt)) +
geom_point(size=s, alpha=a) +
scale_color_manual(values=colour_pal) +
theme(
axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank(),
axis.title.x=element_blank(), axis.text.x=element_blank(), axis.ticks.x=element_blank(),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.border = element_blank(), panel.background = element_blank(),
legend.position="bottom", legend.title=element_blank()
) +
guides(colour = guide_legend(override.aes = list(size=3)))
#+
# guides(colour=FALSE)
p_asian
ggsave(paste(paste(out_dir,fname,sep="/"),".jpeg", sep=""), height=h, width=w, units="in")
```
# Tweak the dataset so that we can use ethnicity x COB
```{r}
ukbb_asian_data$eth_COB <- paste(ukbb_asian_data$eth_txt, "born in", ukbb_asian_data$COB)
eth_cob_counts <- as.data.frame(table(ukbb_asian_data$eth_COB))
eth_cob_counts[order(-eth_cob_counts$Freq),][1:10,]
```
We only want the top few.
```{r}
ukbb_asian_data$eth_COB_2 <- ifelse(ukbb_asian_data$eth_COB=="Indian born in Kenya",
"Indian born in Kenya", "Other")
```
# Now do some more plotting with this new variable
```{r}
out_dir <- "/Volumes/Stockage/alex/ukbb_images/ggplot_for_export"
fname <- "Asthma_FullAsian_PC_QC_new_UMAP_PC5_NC2_NN15_MD05_201931173256_ethcob"
h <- 10
w <- 6.49
s <- 0.5
a <- 0.4
# Colour palette from other projection
colour_pal <- c("#49006a","#e8e8e8")
p_asian <- ggplot(data = ukbb_asian_data, aes(x=x_coords, y=y_coords, colour=eth_COB_2)) +
geom_point(size=s, alpha=a) +
scale_color_manual(values=colour_pal) +
theme(axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank()) +
guides(colour=FALSE) +
annotate("text", x=5, y=-25,label="Indians born in Kenya",colour=colour_pal[1])
p_asian
ggsave(paste(paste(out_dir,fname,sep="/"),".jpeg", sep=""), height=h, width=w, units="in")
```