forked from Z3Prover/z3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmini_quip.py
786 lines (698 loc) · 25 KB
/
mini_quip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
from z3 import *
import heapq
import numpy
import time
import random
verbose = True
# Simplistic (and fragile) converter from
# a class of Horn clauses corresponding to
# a transition system into a transition system
# representation as <init, trans, goal>
# It assumes it is given three Horn clauses
# of the form:
# init(x) => Invariant(x)
# Invariant(x) and trans(x,x') => Invariant(x')
# Invariant(x) and goal(x) => Goal(x)
# where Invariant and Goal are uninterpreted predicates
class Horn2Transitions:
def __init__(self):
self.trans = True
self.init = True
self.inputs = []
self.goal = True
self.index = 0
def parse(self, file):
fp = Fixedpoint()
goals = fp.parse_file(file)
for r in fp.get_rules():
if not is_quantifier(r):
continue
b = r.body()
if not is_implies(b):
continue
f = b.arg(0)
g = b.arg(1)
if self.is_goal(f, g):
continue
if self.is_transition(f, g):
continue
if self.is_init(f, g):
continue
def is_pred(self, p, name):
return is_app(p) and p.decl().name() == name
def is_goal(self, body, head):
if not self.is_pred(head, "Goal"):
return False
pred, inv = self.is_body(body)
if pred is None:
return False
self.goal = self.subst_vars("x", inv, pred)
self.goal = self.subst_vars("i", self.goal, self.goal)
self.inputs += self.vars
self.inputs = list(set(self.inputs))
return True
def is_body(self, body):
if not is_and(body):
return None, None
fmls = [f for f in body.children() if self.is_inv(f) is None]
inv = None
for f in body.children():
if self.is_inv(f) is not None:
inv = f;
break
return And(fmls), inv
def is_inv(self, f):
if self.is_pred(f, "Invariant"):
return f
return None
def is_transition(self, body, head):
pred, inv0 = self.is_body(body)
if pred is None:
return False
inv1 = self.is_inv(head)
if inv1 is None:
return False
pred = self.subst_vars("x", inv0, pred)
self.xs = self.vars
pred = self.subst_vars("xn", inv1, pred)
self.xns = self.vars
pred = self.subst_vars("i", pred, pred)
self.inputs += self.vars
self.inputs = list(set(self.inputs))
self.trans = pred
return True
def is_init(self, body, head):
for f in body.children():
if self.is_inv(f) is not None:
return False
inv = self.is_inv(head)
if inv is None:
return False
self.init = self.subst_vars("x", inv, body)
return True
def subst_vars(self, prefix, inv, fml):
subst = self.mk_subst(prefix, inv)
self.vars = [ v for (k,v) in subst ]
return substitute(fml, subst)
def mk_subst(self, prefix, inv):
self.index = 0
if self.is_inv(inv) is not None:
return [(f, self.mk_bool(prefix)) for f in inv.children()]
else:
vars = self.get_vars(inv)
return [(f, self.mk_bool(prefix)) for f in vars]
def mk_bool(self, prefix):
self.index += 1
return Bool("%s%d" % (prefix, self.index))
def get_vars(self, f, rs=[]):
if is_var(f):
return z3util.vset(rs + [f], str)
else:
for f_ in f.children():
rs = self.get_vars(f_, rs)
return z3util.vset(rs, str)
# Produce a finite domain solver.
# The theory QF_FD covers bit-vector formulas
# and pseudo-Boolean constraints.
# By default cardinality and pseudo-Boolean
# constraints are converted to clauses. To override
# this default for cardinality constraints
# we set sat.cardinality.solver to True
def fd_solver():
s = SolverFor("QF_FD")
s.set("sat.cardinality.solver", True)
return s
# negate, avoid double negation
def negate(f):
if is_not(f):
return f.arg(0)
else:
return Not(f)
def cube2clause(cube):
return Or([negate(f) for f in cube])
class State:
def __init__(self, s):
self.R = set([])
self.solver = s
def add(self, clause):
if clause not in self.R:
self.R |= { clause }
self.solver.add(clause)
def is_seq(f):
return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
# Check if the initial state is bad
def check_disjoint(a, b):
s = fd_solver()
s.add(a)
s.add(b)
return unsat == s.check()
# Remove clauses that are subsumed
def prune(R):
removed = set([])
s = fd_solver()
for f1 in R:
s.push()
for f2 in R:
if f2 not in removed:
s.add(Not(f2) if f1.eq(f2) else f2)
if s.check() == unsat:
removed |= { f1 }
s.pop()
return R - removed
# Quip variant of IC3
must = True
may = False
class QLemma:
def __init__(self, c):
self.cube = c
self.clause = cube2clause(c)
self.bad = False
def __hash__(self):
return hash(tuple(set(self.cube)))
def __eq__(self, qlemma2):
if set(self.cube) == set(qlemma2.cube) and self.bad == qlemma2.bad:
return True
else:
return False
def __ne__():
if not self.__eq__(self, qlemma2):
return True
else:
return False
class QGoal:
def __init__(self, cube, parent, level, must, encounter):
self.level = level
self.cube = cube
self.parent = parent
self.must = must
def __lt__(self, other):
return self.level < other.level
class QReach:
# it is assumed that there is a single initial state
# with all latches set to 0 in hardware design, so
# here init will always give a state where all variable are set to 0
def __init__(self, init, xs):
self.xs = xs
self.constant_xs = [Not(x) for x in self.xs]
s = fd_solver()
s.add(init)
is_sat = s.check()
assert is_sat == sat
m = s.model()
# xs is a list, "for" will keep the order when iterating
self.states = numpy.array([[False for x in self.xs]]) # all set to False
assert not numpy.max(self.states) # since all element is False, so maximum should be False
# check if new state exists
def is_exist(self, state):
if state in self.states:
return True
return False
def enumerate(self, i, state_b, state):
while i < len(state) and state[i] not in self.xs:
i += 1
if i >= len(state):
if state_b.tolist() not in self.states.tolist():
self.states = numpy.append(self.states, [state_b], axis = 0)
return state_b
else:
return None
state_b[i] = False
if self.enumerate(i+1, state_b, state) is not None:
return state_b
else:
state_b[i] = True
return self.enumerate(i+1, state_b, state)
def is_full_state(self, state):
for i in range(len(self.xs)):
if state[i] in self.xs:
return False
return True
def add(self, cube):
state = self.cube2partial_state(cube)
assert len(state) == len(self.xs)
if not self.is_exist(state):
return None
if self.is_full_state(state):
self.states = numpy.append(self.states, [state], axis = 0)
else:
# state[i] is instance, state_b[i] is boolean
state_b = numpy.array(state)
for i in range(len(state)): # state is of same length as self.xs
# i-th literal in state hasn't been assigned value
# init un-assigned literals in state_b as True
# make state_b only contain boolean value
if state[i] in self.xs:
state_b[i] = True
else:
state_b[i] = is_true(state[i])
if self.enumerate(0, state_b, state) is not None:
lits_to_remove = set([negate(f) for f in list(set(cube) - set(self.constant_xs))])
self.constant_xs = list(set(self.constant_xs) - lits_to_remove)
return state
return None
def cube2partial_state(self, cube):
s = fd_solver()
s.add(And(cube))
is_sat = s.check()
assert is_sat == sat
m = s.model()
state = numpy.array([m.eval(x) for x in self.xs])
return state
def state2cube(self, s):
result = copy.deepcopy(self.xs) # x1, x2, ...
for i in range(len(self.xs)):
if not s[i]:
result[i] = Not(result[i])
return result
def intersect(self, cube):
state = self.cube2partial_state(cube)
mask = True
for i in range(len(self.xs)):
if is_true(state[i]) or is_false(state[i]):
mask = (self.states[:, i] == state[i]) & mask
intersects = numpy.reshape(self.states[mask], (-1, len(self.xs)))
if intersects.size > 0:
return And(self.state2cube(intersects[0])) # only need to return one single intersect
return None
class Quip:
def __init__(self, init, trans, goal, x0, inputs, xn):
self.x0 = x0
self.inputs = inputs
self.xn = xn
self.init = init
self.bad = goal
self.trans = trans
self.min_cube_solver = fd_solver()
self.min_cube_solver.add(Not(trans))
self.goals = []
s = State(fd_solver())
s.add(init)
s.solver.add(trans) # check if a bad state can be reached in one step from current level
self.states = [s]
self.s_bad = fd_solver()
self.s_good = fd_solver()
self.s_bad.add(self.bad)
self.s_good.add(Not(self.bad))
self.reachable = QReach(self.init, x0)
self.frames = [] # frames is a 2d list, each row (representing level) is a set containing several (clause, bad) pairs
self.count_may = 0
def next(self, f):
if is_seq(f):
return [self.next(f1) for f1 in f]
return substitute(f, zip(self.x0, self.xn))
def prev(self, f):
if is_seq(f):
return [self.prev(f1) for f1 in f]
return substitute(f, zip(self.xn, self.x0))
def add_solver(self):
s = fd_solver()
s.add(self.trans)
self.states += [State(s)]
def R(self, i):
return And(self.states[i].R)
def value2literal(self, m, x):
value = m.eval(x)
if is_true(value):
return x
if is_false(value):
return Not(x)
return None
def values2literals(self, m, xs):
p = [self.value2literal(m, x) for x in xs]
return [x for x in p if x is not None]
def project0(self, m):
return self.values2literals(m, self.x0)
def projectI(self, m):
return self.values2literals(m, self.inputs)
def projectN(self, m):
return self.values2literals(m, self.xn)
# Block a cube by asserting the clause corresponding to its negation
def block_cube(self, i, cube):
self.assert_clause(i, cube2clause(cube))
# Add a clause to levels 1 until i
def assert_clause(self, i, clause):
for j in range(1, i + 1):
self.states[j].add(clause)
assert str(self.states[j].solver) != str([False])
# minimize cube that is core of Dual solver.
# this assumes that props & cube => Trans
# which means props & cube can only give us a Tr in Trans,
# and it will never make !Trans sat
def minimize_cube(self, cube, inputs, lits):
# min_cube_solver has !Trans (min_cube.solver.add(!Trans))
is_sat = self.min_cube_solver.check(lits + [c for c in cube] + [i for i in inputs])
assert is_sat == unsat
# unsat_core gives us some lits which make Tr sat,
# so that we can ignore other lits and include more states
core = self.min_cube_solver.unsat_core()
assert core
return [c for c in core if c in set(cube)]
# push a goal on a heap
def push_heap(self, goal):
heapq.heappush(self.goals, (goal.level, goal))
# make sure cube to be blocked excludes all reachable states
def check_reachable(self, cube):
s = fd_solver()
for state in self.reachable.states:
s.push()
r = self.reachable.state2cube(state)
s.add(And(self.prev(r)))
s.add(self.prev(cube))
is_sat = s.check()
s.pop()
if is_sat == sat:
# if sat, it means the cube to be blocked contains reachable states
# so it is an invalid cube
return False
# if all fail, is_sat will be unsat
return True
# Rudimentary generalization:
# If the cube is already unsat with respect to transition relation
# extract a core (not necessarily minimal)
# otherwise, just return the cube.
def generalize(self, cube, f):
s = self.states[f - 1].solver
if unsat == s.check(cube):
core = s.unsat_core()
if self.check_reachable(core):
return core, f
return cube, f
def valid_reachable(self, level):
s = fd_solver()
s.add(self.init)
for i in range(level):
s.add(self.trans)
for state in self.reachable.states:
s.push()
s.add(And(self.next(self.reachable.state2cube(state))))
print self.reachable.state2cube(state)
print s.check()
s.pop()
def lemmas(self, level):
return [(l.clause, l.bad) for l in self.frames[level]]
# whenever a new reachable state is found, we use it to mark some existing lemmas as bad lemmas
def mark_bad_lemmas(self, new):
s = fd_solver()
reset = False
for frame in self.frames:
for lemma in frame:
s.push()
s.add(lemma.clause)
is_sat = s.check(new)
if is_sat == unsat:
reset = True
lemma.bad = True
s.pop()
if reset:
self.states = [self.states[0]]
for i in range(1, len(self.frames)):
self.add_solver()
for lemma in self.frames[i]:
if not lemma.bad:
self.states[i].add(lemma.clause)
# prev & tras -> r', such that r' intersects with cube
def add_reachable(self, prev, cube):
s = fd_solver()
s.add(self.trans)
s.add(prev)
s.add(self.next(And(cube)))
is_sat = s.check()
assert is_sat == sat
m = s.model()
new = self.projectN(m)
state = self.reachable.add(self.prev(new)) # always add as non-primed
if state is not None: # if self.states do not have new state yet
self.mark_bad_lemmas(self.prev(new))
# Check if the negation of cube is inductive at level f
def is_inductive(self, f, cube):
s = self.states[f - 1].solver
s.push()
s.add(self.prev(Not(And(cube))))
is_sat = s.check(cube)
if is_sat == sat:
m = s.model()
s.pop()
if is_sat == sat:
cube = self.next(self.minimize_cube(self.project0(m), self.projectI(m), self.projectN(m)))
elif is_sat == unsat:
cube, f = self.generalize(cube, f)
cube = self.next(cube)
return cube, f, is_sat
# Determine if there is a cube for the current state
# that is potentially reachable.
def unfold(self, level):
core = []
self.s_bad.push()
R = self.R(level)
self.s_bad.add(R) # check if current frame intersects with bad states, no trans
is_sat = self.s_bad.check()
if is_sat == sat:
m = self.s_bad.model()
cube = self.project0(m)
props = cube + self.projectI(m)
self.s_good.push()
self.s_good.add(R)
is_sat2 = self.s_good.check(props)
assert is_sat2 == unsat
core = self.s_good.unsat_core()
assert core
core = [c for c in core if c in set(cube)]
self.s_good.pop()
self.s_bad.pop()
return is_sat, core
# A state s0 and level f0 such that
# not(s0) is f0-1 inductive
def quip_blocked(self, s0, f0):
self.push_heap(QGoal(self.next(s0), None, f0, must, 0))
while self.goals:
f, g = heapq.heappop(self.goals)
sys.stdout.write("%d." % f)
if not g.must:
self.count_may -= 1
sys.stdout.flush()
if f == 0:
if g.must:
s = fd_solver()
s.add(self.init)
s.add(self.prev(g.cube))
# since init is a complete assignment, so g.cube must equal to init in sat solver
assert is_sat == s.check()
if verbose:
print("")
return g
self.add_reachable(self.init, g.parent.cube)
continue
r0 = self.reachable.intersect(self.prev(g.cube))
if r0 is not None:
if g.must:
if verbose:
print ""
s = fd_solver()
s.add(self.trans)
# make it as a concrete reachable state
# intersect returns an And(...), so use children to get cube list
g.cube = r0.children()
while True:
is_sat = s.check(self.next(g.cube))
assert is_sat == sat
r = self.next(self.project0(s.model()))
r = self.reachable.intersect(self.prev(r))
child = QGoal(self.next(r.children()), g, 0, g.must, 0)
g = child
if not check_disjoint(self.init, self.prev(g.cube)):
# g is init, break the loop
break
init = g
while g.parent is not None:
g.parent.level = g.level + 1
g = g.parent
return init
if g.parent is not None:
self.add_reachable(r0, g.parent.cube)
continue
cube = None
is_sat = sat
f_1 = len(self.frames) - 1
while f_1 >= f:
for l in self.frames[f_1]:
if not l.bad and len(l.cube) > 0 and set(l.cube).issubset(g.cube):
cube = l.cube
is_sat == unsat
break
f_1 -= 1
if cube is None:
cube, f_1, is_sat = self.is_inductive(f, g.cube)
if is_sat == unsat:
self.frames[f_1].add(QLemma(self.prev(cube)))
self.block_cube(f_1, self.prev(cube))
if f_1 < f0:
# learned clause might also be able to block same bad states in higher level
if set(list(cube)) != set(list(g.cube)):
self.push_heap(QGoal(cube, None, f_1 + 1, may, 0))
self.count_may += 1
else:
# re-queue g.cube in higher level, here g.parent is simply for tracking down the trace when output.
self.push_heap(QGoal(g.cube, g.parent, f_1 + 1, g.must, 0))
if not g.must:
self.count_may += 1
else:
# qcube is a predecessor of g
qcube = QGoal(cube, g, f_1 - 1, g.must, 0)
if not g.must:
self.count_may += 1
self.push_heap(qcube)
if verbose:
print("")
return None
# Check if there are two states next to each other that have the same clauses.
def is_valid(self):
i = 1
inv = None
while True:
# self.states[].R contains full lemmas
# self.frames[] contains delta-encoded lemmas
while len(self.states) <= i+1:
self.add_solver()
while len(self.frames) <= i+1:
self.frames.append(set())
duplicates = set([])
for l in self.frames[i+1]:
if l in self.frames[i]:
duplicates |= {l}
self.frames[i] = self.frames[i] - duplicates
pushed = set([])
for l in (self.frames[i] - self.frames[i+1]):
if not l.bad:
s = self.states[i].solver
s.push()
s.add(self.next(Not(l.clause)))
s.add(l.clause)
is_sat = s.check()
s.pop()
if is_sat == unsat:
self.frames[i+1].add(l)
self.states[i+1].add(l.clause)
pushed |= {l}
self.frames[i] = self.frames[i] - pushed
if (not (self.states[i].R - self.states[i+1].R)
and len(self.states[i].R) != 0):
inv = prune(self.states[i].R)
F_inf = self.frames[i]
j = i + 1
while j < len(self.states):
for l in F_inf:
self.states[j].add(l.clause)
j += 1
self.frames[len(self.states)-1] = F_inf
self.frames[i] = set([])
break
elif (len(self.states[i].R) == 0
and len(self.states[i+1].R) == 0):
break
i += 1
if inv is not None:
self.s_bad.push()
self.s_bad.add(And(inv))
is_sat = self.s_bad.check()
if is_sat == unsat:
self.s_bad.pop()
return And(inv)
self.s_bad.pop()
return None
def run(self):
if not check_disjoint(self.init, self.bad):
return "goal is reached in initial state"
level = 0
while True:
inv = self.is_valid() # self.add_solver() here
if inv is not None:
return inv
is_sat, cube = self.unfold(level)
if is_sat == unsat:
level += 1
if verbose:
print("Unfold %d" % level)
sys.stdout.flush()
elif is_sat == sat:
cex = self.quip_blocked(cube, level)
if cex is not None:
return cex
else:
return is_sat
def test(file):
h2t = Horn2Transitions()
h2t.parse(file)
if verbose:
print("Test file: %s") % file
mp = Quip(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.inputs, h2t.xns)
start_time = time.time()
result = mp.run()
end_time = time.time()
if isinstance(result, QGoal):
g = result
if verbose:
print("Trace")
while g:
if verbose:
print(g.level, g.cube)
g = g.parent
print("--- used %.3f seconds ---" % (end_time - start_time))
validate(mp, result, mp.trans)
return
if isinstance(result, ExprRef):
if verbose:
print("Invariant:\n%s " % result)
print("--- used %.3f seconds ---" % (end_time - start_time))
validate(mp, result, mp.trans)
return
print(result)
def validate(var, result, trans):
if isinstance(result, QGoal):
g = result
s = fd_solver()
s.add(trans)
while g.parent is not None:
s.push()
s.add(var.prev(g.cube))
s.add(var.next(g.parent.cube))
assert sat == s.check()
s.pop()
g = g.parent
if verbose:
print "--- validation succeed ----"
return
if isinstance(result, ExprRef):
inv = result
s = fd_solver()
s.add(trans)
s.push()
s.add(var.prev(inv))
s.add(Not(var.next(inv)))
assert unsat == s.check()
s.pop()
cube = var.prev(var.init)
step = 0
while True:
step += 1
# too many steps to reach invariant
if step > 1000:
if verbose:
print "--- validation failed --"
return
if not check_disjoint(var.prev(cube), var.prev(inv)):
# reach invariant
break
s.push()
s.add(cube)
assert s.check() == sat
cube = var.projectN(s.model())
s.pop()
if verbose:
print "--- validation succeed ----"
return
test("data/horn1.smt2")
test("data/horn2.smt2")
test("data/horn3.smt2")
test("data/horn4.smt2")
test("data/horn5.smt2")
# test("data/horn6.smt2") # not able to finish