-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
327 lines (254 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import argparse
import os
import time
import pickle
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
from data_load import ImageList
import random
import warnings
import logging
import numpy as np
import json
from TransCDNN_model import config
from TransCDNN_model.vit_cdnn_modeling import TransCDNN
from tqdm import tqdm
warnings.simplefilter("ignore")
parser = argparse.ArgumentParser()
parser.add_argument('-j', '--workers', default=36, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=2, type=int,
metavar='N', help='mini-batch size (default: 32)')
parser.add_argument('-g', '--gpu', default='0,1', type=str,
metavar='N', help='GPU NO. (default: 0)')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--split', default=0, type=int)
args = parser.parse_args()
name = 'TransCDNN'
num_layers = 8
path = './ckpts-0412/reshape/transcdnn_'
ckpts = path + str(num_layers) + '/'
if not os.path.exists(ckpts): os.makedirs(ckpts)
log_file = os.path.join(ckpts + "/train_log_%s.txt" % (name, ))
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s', filename=log_file)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
logging.getLogger('').addHandler(console)
def main():
# global args, best_score
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
random.seed(1234)
np.random.seed(1234)
config_vit = config.get_cdnn_b16_config()
config_vit.transformer['num_layers'] = num_layers
model = TransCDNN(config_vit, num_classes=config_vit.n_classes)
#model = nn.DataParallel(model)
#model = model.cuda()
# model.load_from(weights=np.load(config_vit.pretrained_path))
params = model.parameters()
cudnn.benchmark = True
optimizer = torch.optim.Adam(params, args.lr,
weight_decay=args.weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=100)
loss_history_path = ckpts + 'loss_history.pkl'
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optim_dict'])
scheduler.load_state_dict(checkpoint['scheduler_dict'])
best_loss = checkpoint['best_loss'] # epoch 19, 59
best_epoch = checkpoint['best_epoch']
with open(loss_history_path, 'rb') as f:
loss_history = pickle.load(f)
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
loss_history = {'train_loss_history': [], 'valid_loss_history': []}
best_loss = float('inf')
best_epoch = 0
print("=> no checkpoint found at '{}'".format(args.resume))
root = './traffic_dataset/traffic_frames/'
train_imgs = [json.loads(line) for line in open(root + 'train.json')]
valid_imgs = [json.loads(line) for line in open(root + 'valid.json')]
test_imgs = [json.loads(line) for line in open(root + 'test.json')]
train_loader = DataLoader(
ImageList(root, train_imgs, for_train=True),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers,
pin_memory=True)
valid_loader = DataLoader(
ImageList(root, valid_imgs),
batch_size=16, shuffle=False,
num_workers=args.workers,
pin_memory=True)
test_loader = DataLoader(
ImageList(root, test_imgs),
batch_size=64, shuffle=False,
num_workers=args.workers,
pin_memory=True)
criterion = nn.BCELoss().cuda()
logging.info('-------------- New training session, LR = %f ----------------' % (args.lr, ))
logging.info('-- length of training images = %d--length of valid images = %d--' % (len(train_imgs),len(valid_imgs)))
logging.info('-- length of test images = %d--' % (len(test_imgs)))
best_file_name = os.path.join(ckpts, 'model_best.tar')
for epoch in range(args.start_epoch, args.epochs):
# adjust_learning_rate(optimizer, epoch)
# train for one epoch
train_loss = train(
train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
valid_loss = validate(
valid_loader, model, criterion)
scheduler.step()
loss_history['train_loss_history'].append(train_loss)
loss_history['valid_loss_history'].append(valid_loss)
file_name_last = os.path.join(ckpts, 'model_epoch_%d.tar' % (epoch + 1,))
file_name_former = os.path.join(ckpts, 'model_epoch_%d.tar' % epoch)
best_loss = min(valid_loss, best_loss)
# remember best lost and save checkpoint as 'model_best.tar'
if valid_loss == best_loss:
best_epoch = epoch + 1
if os.path.isfile(best_file_name):
os.remove(best_file_name)
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
'scheduler_dict': scheduler.state_dict(),
'valid_loss': valid_loss,
'best_loss': best_loss
}, best_file_name)
# save latest model
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
'scheduler_dict': scheduler.state_dict(),
'valid_loss': valid_loss,
'best_loss': best_loss,
'best_epoch': best_epoch
}, file_name_last)
# delete models from former epochs
if epoch != 0:
os.remove(file_name_former)
msg = 'Epoch: {:02d} Train loss {:.4f} | Valid loss {:.4f} | Best loss {:.4f} from epoch {:02d} '.format(
epoch+1, train_loss, valid_loss, best_loss, best_epoch)
logging.info(msg)
# save latest loss history
if os.path.isfile(loss_history_path):
os.remove(loss_history_path)
with open(loss_history_path, 'wb') as f:
pickle.dump(loss_history, f)
checkpoint = torch.load(best_file_name)
model.load_state_dict(checkpoint['state_dict'])
outputs, targets = predict(test_loader, model)
np.save(ckpts + 'p_' + str(num_layers) + '.npy', outputs)
np.save(ckpts + 't_' + str(num_layers) + '.npy', targets)
def train(train_loader, model, criterion, optimizer, epoch):
losses = AverageMeter()
bar = tqdm(enumerate(train_loader), total=len(train_loader))
# switch to train mode
model.train()
start = time.time()
for i, (input, target) in bar:
if (i+1) % 100 == 0:
print('Epoch', epoch+1, 'Iter', i+1)
input = input#.cuda()
target = target#.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
losses.update(loss.item(), target.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 750 == 0:
msg = 'Training Epoch {:03d} Iter {:03d} Loss_avg {:.6f} in {:.3f}s'.format(epoch+1, i+1, losses.avg, time.time() - start)
start = time.time()
logging.info(msg)
print(msg)
return losses.avg
def validate(valid_loader, model, criterion):
losses = AverageMeter()
# switch to evaluate mode
model.eval()
start = time.time()
for i, (input, target) in enumerate(valid_loader):
input = input.cuda()
target = target.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
losses.update(loss.item(), target.size(0))
if (i+1) % 100 == 0:
msg = 'Validating Iter {:03d} Loss {:.6f} in {:.3f}s'.format(i+1, losses.avg, time.time() - start)
start = time.time()
# logging.info(msg)
print(msg)
return losses.avg
def predict(valid_loader, model):
# switch to evaluate mode
model.eval()
targets = []
outputs = []
for i, (input, target) in enumerate(valid_loader):
print(i+1, '/', len(valid_loader))
targets.append(target.numpy().squeeze(1))
input = input.cuda()
with torch.no_grad():
input_var = torch.autograd.Variable(input)
# compute output
output = model(input_var)
outputs.append(output.data.cpu().numpy().squeeze(1))
targets = np.concatenate(targets)
outputs = np.concatenate(outputs)
return outputs, targets
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 20 epochs"""
lr = args.lr * (0.1 ** (epoch // (args.epochs//5)))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()