-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_loader.py
162 lines (119 loc) · 4.57 KB
/
dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys
import gzip
import numpy as np
import pickle
"""
MiniNN - Minimal Neural Network
This code is a straigthforward and minimal implementation
of a multi-layer neural network for training on MNIST dataset.
It is mainly intended for educational and prototyping purpuses.
"""
__author__ = "Gaetan Marceau Caron ([email protected])"
__copyright__ = "Copyright (C) 2015 Gaetan Marceau Caron"
__license__ = "CeCILL 2.1"
__version__ = "1.0"
def unpickle(file):
fo = open(file, 'rb')
dict = pickle.load(fo)
fo.close()
return dict
def load_ramp(valid_size=0.8):
target_column_name = 'TARGET'
df = pd.read_csv("./ramp_data.csv")
y = df[target_column_name].values
X = df.drop(target_column_name, axis=1).values
n_train = int(valid_size * X.shape[0])
train_perm = np.random.permutation(X.shape[0])
X = X[train_perm,:]
y = y[train_perm]
train_set = [X[:n_train],y[:n_train]]
valid_set = [X[n_train:],y[n_train:]]
return train_set, valid_set
def load_mnist(fname="mnist.pkl.gz"):
f = gzip.open(fname, 'rb')
if(sys.version_info.major==2):
train_set, valid_set, test_set = pickle.load(f) # compatibility issue between python 2.7 and 3.4
else:
train_set, valid_set, test_set = pickle.load(f, encoding='latin-1') # compatibility issue between python 2.7 and 3.4
f.close()
# Shuffle
train_X = train_set[0]
train_y = train_set[1]
valid_X = valid_set[0]
valid_y = valid_set[1]
train_perm = np.random.permutation(train_X.shape[0])
train_set = [train_X[train_perm,:],train_y[train_perm]]
valid_perm = np.random.permutation(valid_X.shape[0])
valid_set = [valid_X[valid_perm,:],valid_y[valid_perm]]
return train_set, valid_set, test_set
def load_cifar10():
batch1 = unpickle("./cifar_10/data_batch_1")
batch2 = unpickle("./cifar_10/data_batch_2")
batch3 = unpickle("./cifar_10/data_batch_3")
batch4 = unpickle("./cifar_10/data_batch_4")
batch5 = unpickle("./cifar_10/data_batch_5")
test_batch = unpickle("./cifar_10/test_batch")
data = np.vstack((batch1["data"],batch2["data"],batch3["data"],batch4["data"],batch5["data"]))
labels = np.concatenate((batch1["labels"],batch2["labels"],batch3["labels"],batch4["labels"],batch5["labels"]))
train_set = [data/255.0,labels]
valid_set = [test_batch["data"]/255.0,np.array(test_batch["labels"])]
return train_set,valid_set,valid_set
def load_cifar100():
train_dataset = unpickle("./cifar_100/train")
test_dataset = unpickle("./cifar_100/test")
train_data = train_dataset["data"]/255.0
train_labels = np.array(train_dataset["fine_labels"])
test_data = test_dataset["data"]/255.0
test_labels = np.array(test_dataset["fine_labels"])
train_set = [train_data,train_labels]
valid_set = [test_data,test_labels]
return train_set,valid_set,valid_set
def load_otto():
# import data
train = pd.read_csv('otto_train.csv')
test = pd.read_csv('otto_test.csv')
# Shuffling the data
train = train.loc[np.random.permutation(train.index)]
# drop ids and get labels
labels = train.target.values
train = train.drop('id', axis=1)
train = train.drop('target', axis=1)
test = test.drop('id', axis=1)
# encode labels
lbl_enc = preprocessing.LabelEncoder()
labels = lbl_enc.fit_transform(labels)
train = np.array(train)
train = sklearn.preprocessing.normalize(train)
train_set = []
train_set.append(train[:50000])
train_set.append(labels[:50000])
valid_set = []
valid_set.append(train[50000:])
valid_set.append(labels[50000:])
return train_set, valid_set, valid_set
def load_feat_otto():
# import data
train = pd.read_csv('otto_train.csv')
test = pd.read_csv('otto_test.csv')
# Shuffling the data
train = train.loc[np.random.permutation(train.index)]
# drop ids and get labels
labels = train.target.values
train = train.drop('id', axis=1)
train = train.drop('target', axis=1)
test = test.drop('id', axis=1)
# transform counts to TFIDF features
tfidf = feature_extraction.text.TfidfTransformer()
train = tfidf.fit_transform(train).toarray()
test = tfidf.transform(test).toarray()
# encode labels
lbl_enc = preprocessing.LabelEncoder()
labels = lbl_enc.fit_transform(labels)
#train = np.array(train)
train_set = []
train_set.append(train[:50000])
train_set.append(labels[:50000])
valid_set = []
valid_set.append(train[50000:])
valid_set.append(labels[50000:])
return train_set, valid_set, valid_set