-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrossproperty_server.py
448 lines (349 loc) · 34.4 KB
/
crossproperty_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from flask import Flask, render_template, request, Markup
from sklearn import linear_model, svm, ensemble, tree, neighbors
import pickle
from functions import *
import numpy as np
architecture = '1024x4D-512x3D-256x3D-128x3D-64x2-32x1-1'
activation = 'relu'
dropouts = [0.8, 0.9, 0.7, 0.8]
num_input = 86
num_input_pa = 145
num_input_fe1024 = 1024
properties = ["Properties", "Encut (eV)", "Kpoint Length Unit (Å)", "Kpoints Array Average (Å)", "Bandgap Optb88vdw (eV)",
"Formation Enthalpy (eV/atom)","Ehull (eV/atom)", "Magmom Oszicar (μB)", "Magmom Outcar (μB)", "Eps Average Root (x)",
"P Effective Masses (kg)", "N Effective Masses (kg)", "P Powerfact (W{}m{}K)".format('\u2081', '\u2081'), "N Powerfact (W{}m{}K)".format('\u2081', '\u2081'),
"P Seebeck (μV/K)", "N Seebeck (μV/K)", "Meps Average Root (x)", "Max Mode (cm{}{})".format('\u207B', '\u00B9'), "Min Mode (cm{}{})".format('\u207B', '\u00B9'), "Elastic Tensor C11 (GPa)",
"Elastic Tensor C12 (GPa)", "Elastic Tensor C13 (GPa)", "Elastic Tensor C22 (GPa)", "Elastic Tensor C33 (GPa)",
"Elastic Tensor C44 (GPa)", "Elastic Tensor C55 (GPa)", "Elastic Tensor C66 (GPa)", "Bulk Modulus Kv (GPa)",
"Shear Modulus Gv (GPa)", "Bandgap MBJ (eV)", "Spillage (Å{}{})".format('\u207B', '\u00B9'), "Slme (%)", "Max Ir Mode (cm{}{})".format('\u207B', '\u00B9'), "Min Ir Mode (cm{}{})".format('\u207B', '\u00B9'),
"Dfpt PM Dielectric Electronic (ε{}{})".format('\u2081', '\u2081'), "Dfpt PM Dielectric (ε{}{})".format('\u2081', '\u2081'), "Dfpt PM Dielectric Ioonic (ε{}{})".format('\u2081', '\u2081'),
"Dfpt PM Eij (cm{}{})".format('\u207B', '\u00B2'), "Dfpt PM Dij (cm{}{})".format('\u207B', '\u00B2'), "Exfoliation Energy (eV/atom)", "Expt Formation Energy (eV/atom)", "Expt Bandgap (eV)"]
app = Flask(__name__)
inputs = Input(shape=(num_input,), name='elemental_fractions')
outputs = define_model(inputs, architecture, dropouts=dropouts)
model = Model(inputs=inputs, outputs=outputs, name= 'ElemNet')
inputs_pa = Input(shape=(num_input_pa,), name='physical_attributes')
outputs_pa = define_model(inputs_pa, architecture, dropouts=dropouts)
model_pa = Model(inputs=inputs_pa, outputs=outputs_pa, name= 'ElemNet')
inputs_fe1024 = Input(shape=(num_input_fe1024,), name='input1024')
outputs_fe1024 = define_model(inputs_fe1024, architecture, dropouts=dropouts)
model_fe1024 = Model(inputs=inputs_fe1024, outputs=outputs_fe1024, name= 'ElemNet')
@app.route('/', methods = ['GET', 'POST'])
def index():
return render_template('./index.html')
@app.route('/prediction.html', methods = ['GET', 'POST'])
def prediction():
compounds = str(request.form.get('compounds', type=str).strip())
try:
compounds = toList(compounds)
compound_ef = compound_to_ef(compounds)
compound_pa = compound_to_pa(compounds)
np_properties = np.asarray(properties)
np_compounds = np.asarray(compounds)
np_compounds = np.concatenate((np_properties[0].reshape(1,1), np_compounds.reshape(1,len(np_compounds))), axis=1)
np_compounds = np_compounds.reshape(np_compounds.shape[1],)
if (request.form.get('all')!=None):
encut = np.round(ml_model_prediction('model/model_ml_encut.sav', compound_ef), 1)
np_encut = np.concatenate((np_properties[1].reshape(1,1), encut.reshape(1,encut.shape[0])), axis=1)
klu = np.round(ml_model_prediction('model/model_mlpa_kpoint_length_unit.sav', compound_pa), 4)
np_klu = np.concatenate((np_properties[2].reshape(1,1), klu.reshape(1,klu.shape[0])), axis=1)
kpaa = np.round(ml_model_prediction('model/model_mlpa_kpoints_array_average.sav', compound_pa), 4)
np_kpaa = np.concatenate((np_properties[3].reshape(1,1), kpaa.reshape(1,kpaa.shape[0])), axis=1)
optb = np.round(model_prediction(model, 'model/model_tlmod_optb88vdw_bandgap_fromstability_elemnet_tf2_1.h5', compound_ef), 4)
np_optb = np.concatenate((np_properties[4].reshape(1,1), optb.reshape(1,optb.shape[0])), axis=1)
deltae = np.round(model_prediction(model, 'model/model_tl_deltae_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_deltae = np.concatenate((np_properties[5].reshape(1,1), deltae.reshape(1,deltae.shape[0])), axis=1)
ehull = np.round(model_prediction(model, 'model/model_tl_ehull_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_ehull = np.concatenate((np_properties[6].reshape(1,1), ehull.reshape(1,ehull.shape[0])), axis=1)
magoszi = np.round(model_prediction(model, 'model/model_tl_magoszi_frommagmom_elemnet_tf2_1.h5', compound_ef), 4)
np_magoszi = np.concatenate((np_properties[7].reshape(1,1), magoszi.reshape(1,magoszi.shape[0])), axis=1)
magout = np.round(model_prediction(model, 'model/model_tlmod_magout_frommagmom_elemnet_tf2_1.h5', compound_ef), 4)
np_magout = np.concatenate((np_properties[8].reshape(1,1), magout.reshape(1,magout.shape[0])), axis=1)
eps = np.round(model_prediction(model, 'model/model_tl_eps_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_eps = np.concatenate((np_properties[9].reshape(1,1), eps.reshape(1,eps.shape[0])), axis=1)
pem300k = np.round(ml_model_prediction('model/model_mlpa_p_em300k.sav', compound_pa), 4)
np_pem300k = np.concatenate((np_properties[10].reshape(1,1), pem300k.reshape(1,pem300k.shape[0])), axis=1)
nem300k = np.round(ml_model_prediction('model/model_mlpa_n_em300k.sav', compound_pa), 4)
np_nem300k = np.concatenate((np_properties[11].reshape(1,1), nem300k.reshape(1,nem300k.shape[0])), axis=1)
ppf = np.round(model_prediction(model, 'model/model_tl_ppf_fromstability_elemnet_tf2_1.h5', compound_ef), 1)
np_ppf = np.concatenate((np_properties[12].reshape(1,1), ppf.reshape(1,ppf.shape[0])), axis=1)
npf = np.round(model_prediction(model, 'model/model_tl_npf_fromstability_elemnet_tf2_1.h5', compound_ef), 1)
np_npf = np.concatenate((np_properties[13].reshape(1,1), npf.reshape(1,npf.shape[0])), axis=1)
psb = np.round(ml_model_prediction('model/model_mlpa_p_Seebeck.sav', compound_pa), 1)
np_psb = np.concatenate((np_properties[14].reshape(1,1), psb.reshape(1,psb.shape[0])), axis=1)
nsb = np.round(ml_model_prediction('model/model_mlpa_n_Seebeck.sav', compound_pa), 1)
np_nsb = np.concatenate((np_properties[15].reshape(1,1), nsb.reshape(1,nsb.shape[0])), axis=1)
meps = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_meps_fromdeltae_layer4_tf2_1.h5', compound_ef, 2), 4)
np_meps = np.concatenate((np_properties[16].reshape(1,1), meps.reshape(1,meps.shape[0])), axis=1)
maxm = np.round(ml_model_prediction('model/model_mlpa_max_mode.sav', compound_pa), 1)
np_maxm = np.concatenate((np_properties[17].reshape(1,1), maxm.reshape(1,maxm.shape[0])), axis=1)
minm = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_minm_fromstability_layer8_tf2_1.h5', compound_ef, 4), 2)
np_minm = np.concatenate((np_properties[18].reshape(1,1), minm.reshape(1,minm.shape[0])), axis=1)
etc11 = np.round(model_prediction(model, 'model/model_tl_etc11_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_etc11 = np.concatenate((np_properties[19].reshape(1,1), etc11.reshape(1,etc11.shape[0])), axis=1)
etc12 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc12_fromenergy_layer4_tf2_1.h5', compound_ef, 2), 2)
np_etc12 = np.concatenate((np_properties[20].reshape(1,1), etc12.reshape(1,etc12.shape[0])), axis=1)
etc13 = np.round(model_prediction(model, 'model/model_tl_etc13_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_etc13 = np.concatenate((np_properties[21].reshape(1,1), etc13.reshape(1,etc13.shape[0])), axis=1)
etc22 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc22_fromenergy_layer4_tf2_1.h5', compound_ef, 2), 2)
np_etc22 = np.concatenate((np_properties[22].reshape(1,1), etc22.reshape(1,etc22.shape[0])), axis=1)
etc33 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_etc33_fromdeltae_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc33 = np.concatenate((np_properties[23].reshape(1,1), etc33.reshape(1,etc33.shape[0])), axis=1)
etc44 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc44_fromstability_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc44 = np.concatenate((np_properties[24].reshape(1,1), etc44.reshape(1,etc44.shape[0])), axis=1)
etc55 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc55_fromstability_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc55 = np.concatenate((np_properties[25].reshape(1,1), etc55.reshape(1,etc55.shape[0])), axis=1)
etc66 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc66_fromstability_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc66 = np.concatenate((np_properties[26].reshape(1,1), etc66.reshape(1,etc66.shape[0])), axis=1)
bulk = np.round(model_prediction(model, 'model/model_tl_bulkmoduluskv_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_bulk = np.concatenate((np_properties[27].reshape(1,1), bulk.reshape(1,bulk.shape[0])), axis=1)
shear = np.round(model_prediction(model, 'model/model_tl_shearmodulusgv_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_shear = np.concatenate((np_properties[28].reshape(1,1), shear.reshape(1,shear.shape[0])), axis=1)
mbj = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturebandgap_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_mbj_bandgap_frombandgap_layer2_tf2_1.h5', compound_ef, 1), 4)
np_mbj = np.concatenate((np_properties[29].reshape(1,1), mbj.reshape(1,mbj.shape[0])), axis=1)
spillage = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_spillage_fromdeltae_layer4_tf2_1.h5', compound_ef, 2), 4)
np_spillage = np.concatenate((np_properties[30].reshape(1,1), spillage.reshape(1,spillage.shape[0])), axis=1)
slme = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturemagmompa_wojarvis_range_new_trf_tf2_1.h5', 'model/model_feattl_slme_frommagmom_layer6_tf2_1.h5', compound_ef, 3), 4)
np_slme = np.concatenate((np_properties[31].reshape(1,1), slme.reshape(1,slme.shape[0])), axis=1)
maxirm = np.round(model_prediction(model_pa, 'model/model_scpa_maxirm_elemnet_tf2_1.h5', compound_pa), 1)
np_maxirm = np.concatenate((np_properties[32].reshape(1,1), maxirm.reshape(1,maxirm.shape[0])), axis=1)
minirm = np.round(ml_model_prediction('model/model_mlpa_min_ir_mode.sav', compound_pa), 1)
np_minirm = np.concatenate((np_properties[33].reshape(1,1), minirm.reshape(1,minirm.shape[0])), axis=1)
pmdiel = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdiel_fromstability_layer2_tf2_1.h5', compound_ef, 1), 4)
np_pmdiel = np.concatenate((np_properties[34].reshape(1,1), pmdiel.reshape(1,pmdiel.shape[0])), axis=1)
pmdielectric = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdi_fromstability_layer6_tf2_1.h5', compound_ef, 3), 4)
np_pmdielectric = np.concatenate((np_properties[35].reshape(1,1), pmdielectric.reshape(1,pmdielectric.shape[0])), axis=1)
pmdiio = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdiio_fromenergy_layer2_tf2_1.h5', compound_ef, 1), 4)
np_pmdiio = np.concatenate((np_properties[36].reshape(1,1), pmdiio.reshape(1,pmdiio.shape[0])), axis=1)
pmeij = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturebandgap_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmeij_frombandgap_layer6_tf2_1.h5', compound_ef, 3), 4)
np_pmeij = np.concatenate((np_properties[37].reshape(1,1), pmeij.reshape(1,pmeij.shape[0])), axis=1)
pmdij = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdij_fromenergy_layer6_tf2_1.h5', compound_ef, 3), 2)
np_pmdij = np.concatenate((np_properties[38].reshape(1,1), pmdij.reshape(1,pmdij.shape[0])), axis=1)
exfoli = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_exfoli_fromdeltae_layer8_tf2_1.h5', compound_ef, 4), 2)
np_exfoli = np.concatenate((np_properties[39].reshape(1,1), exfoli.reshape(1,exfoli.shape[0])), axis=1)
exptdeltae = np.round(model_prediction(model, 'model/model_tl_expt_deltae_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_exptdeltae = np.concatenate((np_properties[40].reshape(1,1), exptdeltae.reshape(1,exptdeltae.shape[0])), axis=1)
exptbandgap = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_expt_bandgap_fromdeltae_layer4_tf2_1.h5', compound_ef, 2), 4)
np_exptbandgap = np.concatenate((np_properties[41].reshape(1,1), exptbandgap.reshape(1,exptbandgap.shape[0])), axis=1)
results = np.concatenate((np_encut, np_klu, np_kpaa, np_optb, np_deltae, np_ehull, np_magoszi, np_magout,
np_eps, np_pem300k, np_nem300k, np_ppf, np_npf, np_psb, np_nsb, np_meps, np_maxm,
np_minm, np_etc11, np_etc12, np_etc13, np_etc22, np_etc33, np_etc44, np_etc55, np_etc66,
np_bulk, np_shear, np_mbj, np_spillage, np_slme, np_maxirm, np_minirm, np_pmdiel,
np_pmdielectric, np_pmdiio, np_pmeij, np_pmdij, np_exfoli, np_exptdeltae, np_exptbandgap), axis=0)
print("hello")
else:
select_property = []
select_result = []
if(request.form.get('encut2')!=None):
encut = np.round(ml_model_prediction('model/model_ml_encut.sav', compound_ef), 1)
np_encut = np.concatenate((np_properties[1].reshape(1,1), encut.reshape(1,encut.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_encut)
if(request.form.get('klu2')!=None):
klu = np.round(ml_model_prediction('model/model_mlpa_kpoint_length_unit.sav', compound_pa), 4)
np_klu = np.concatenate((np_properties[2].reshape(1,1), klu.reshape(1,klu.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_klu)
if(request.form.get('kpaa2')!=None):
kpaa = np.round(ml_model_prediction('model/model_mlpa_kpoints_array_average.sav', compound_pa), 4)
np_kpaa = np.concatenate((np_properties[3].reshape(1,1), kpaa.reshape(1,kpaa.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_kpaa)
if(request.form.get('bgoptb2')!=None):
optb = np.round(model_prediction(model, 'model/model_tlmod_optb88vdw_bandgap_fromstability_elemnet_tf2_1.h5', compound_ef), 4)
np_optb = np.concatenate((np_properties[4].reshape(1,1), optb.reshape(1,optb.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_optb)
if(request.form.get('deltae2')!=None):
deltae = np.round(model_prediction(model, 'model/model_tl_deltae_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_deltae = np.concatenate((np_properties[5].reshape(1,1), deltae.reshape(1,deltae.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_deltae)
if(request.form.get('ehull2')!=None):
ehull = np.round(model_prediction(model, 'model/model_tl_ehull_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_ehull = np.concatenate((np_properties[6].reshape(1,1), ehull.reshape(1,ehull.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_ehull)
if(request.form.get('magoszi2')!=None):
magoszi = np.round(model_prediction(model, 'model/model_tl_magoszi_frommagmom_elemnet_tf2_1.h5', compound_ef), 4)
np_magoszi = np.concatenate((np_properties[7].reshape(1,1), magoszi.reshape(1,magoszi.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_magoszi)
if(request.form.get('magout2')!=None):
magout = np.round(model_prediction(model, 'model/model_tlmod_magout_frommagmom_elemnet_tf2_1.h5', compound_ef), 4)
np_magout = np.concatenate((np_properties[8].reshape(1,1), magout.reshape(1,magout.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_magout)
if(request.form.get('eps2')!=None):
eps = np.round(model_prediction(model, 'model/model_tl_eps_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_eps = np.concatenate((np_properties[9].reshape(1,1), eps.reshape(1,eps.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_eps)
if(request.form.get('pem300k2')!=None):
pem300k = np.round(ml_model_prediction('model/model_mlpa_p_em300k.sav', compound_pa), 4)
np_pem300k = np.concatenate((np_properties[10].reshape(1,1), pem300k.reshape(1,pem300k.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_pem300k)
if(request.form.get('nem300k2')!=None):
nem300k = np.round(ml_model_prediction('model/model_mlpa_n_em300k.sav', compound_pa), 4)
np_nem300k = np.concatenate((np_properties[11].reshape(1,1), nem300k.reshape(1,nem300k.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_nem300k)
if(request.form.get('ppf2')!=None):
ppf = np.round(model_prediction(model, 'model/model_tl_ppf_fromstability_elemnet_tf2_1.h5', compound_ef), 1)
np_ppf = np.concatenate((np_properties[12].reshape(1,1), ppf.reshape(1,ppf.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_ppf)
if(request.form.get('npf2')!=None):
npf = np.round(model_prediction(model, 'model/model_tl_npf_fromstability_elemnet_tf2_1.h5', compound_ef), 1)
np_npf = np.concatenate((np_properties[13].reshape(1,1), npf.reshape(1,npf.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_npf)
if(request.form.get('psb2')!=None):
psb = np.round(ml_model_prediction('model/model_mlpa_p_Seebeck.sav', compound_pa), 1)
np_psb = np.concatenate((np_properties[14].reshape(1,1), psb.reshape(1,psb.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_psb)
if(request.form.get('nsb2')!=None):
nsb = np.round(ml_model_prediction('model/model_mlpa_n_Seebeck.sav', compound_pa), 1)
np_nsb = np.concatenate((np_properties[15].reshape(1,1), nsb.reshape(1,nsb.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_nsb)
if(request.form.get('meps2')!=None):
meps = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_meps_fromdeltae_layer4_tf2_1.h5', compound_ef, 2), 4)
np_meps = np.concatenate((np_properties[16].reshape(1,1), meps.reshape(1,meps.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_meps)
if(request.form.get('maxm2')!=None):
maxm = np.round(ml_model_prediction('model/model_mlpa_max_mode.sav', compound_pa), 1)
np_maxm = np.concatenate((np_properties[17].reshape(1,1), maxm.reshape(1,maxm.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_maxm)
if(request.form.get('minm2')!=None):
minm = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_minm_fromstability_layer8_tf2_1.h5', compound_ef, 4), 4)
np_minm = np.concatenate((np_properties[18].reshape(1,1), minm.reshape(1,minm.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_minm)
if(request.form.get('etc112')!=None):
etc11 = np.round(model_prediction(model, 'model/model_tl_etc11_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_etc11 = np.concatenate((np_properties[19].reshape(1,1), etc11.reshape(1,etc11.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc11)
if(request.form.get('etc122')!=None):
etc12 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc12_fromenergy_layer4_tf2_1.h5', compound_ef, 2), 2)
np_etc12 = np.concatenate((np_properties[20].reshape(1,1), etc12.reshape(1,etc12.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc12)
if(request.form.get('etc132')!=None):
etc13 = np.round(model_prediction(model, 'model/model_tl_etc13_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_etc13 = np.concatenate((np_properties[21].reshape(1,1), etc13.reshape(1,etc13.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc13)
if(request.form.get('etc222')!=None):
etc22 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc22_fromenergy_layer4_tf2_1.h5', compound_ef, 2), 2)
np_etc22 = np.concatenate((np_properties[22].reshape(1,1), etc22.reshape(1,etc22.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc22)
if(request.form.get('etc332')!=None):
etc33 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_etc33_fromdeltae_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc33 = np.concatenate((np_properties[23].reshape(1,1), etc33.reshape(1,etc33.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc33)
if(request.form.get('etc442')!=None):
etc44 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc44_fromstability_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc44 = np.concatenate((np_properties[24].reshape(1,1), etc44.reshape(1,etc44.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc44)
if(request.form.get('etc552')!=None):
etc55 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc55_fromstability_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc55 = np.concatenate((np_properties[25].reshape(1,1), etc55.reshape(1,etc55.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc55)
if(request.form.get('etc662')!=None):
etc66 = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_etc66_fromstability_layer6_tf2_1.h5', compound_ef, 3), 2)
np_etc66 = np.concatenate((np_properties[26].reshape(1,1), etc66.reshape(1,etc66.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_etc66)
if(request.form.get('bulk2')!=None):
bulk = np.round(model_prediction(model, 'model/model_tl_bulkmoduluskv_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_bulk = np.concatenate((np_properties[27].reshape(1,1), bulk.reshape(1,bulk.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_bulk)
if(request.form.get('shear2')!=None):
shear = np.round(model_prediction(model, 'model/model_tl_shearmodulusgv_fromstability_elemnet_tf2_1.h5', compound_ef), 2)
np_shear = np.concatenate((np_properties[28].reshape(1,1), shear.reshape(1,shear.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_shear)
if(request.form.get('bgmbj2')!=None):
mbj = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturebandgap_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_mbj_bandgap_frombandgap_layer2_tf2_1.h5', compound_ef, 1), 4)
np_mbj = np.concatenate((np_properties[29].reshape(1,1), mbj.reshape(1,mbj.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_mbj)
if(request.form.get('spillage2')!=None):
spillage = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_spillage_fromdeltae_layer4_tf2_1.h5', compound_ef, 2), 4)
np_spillage = np.concatenate((np_properties[30].reshape(1,1), spillage.reshape(1,spillage.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_spillage)
if(request.form.get('slme2')!=None):
slme = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturemagmompa_wojarvis_range_new_trf_tf2_1.h5', 'model/model_feattl_slme_frommagmom_layer6_tf2_1.h5', compound_ef, 3), 4)
np_slme = np.concatenate((np_properties[31].reshape(1,1), slme.reshape(1,slme.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_slme)
if(request.form.get('maxirm2')!=None):
maxirm = np.round(model_prediction(model_pa, 'model/model_scpa_maxirm_elemnet_tf2_1.h5', compound_pa), 1)
np_maxirm = np.concatenate((np_properties[32].reshape(1,1), maxirm.reshape(1,maxirm.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_maxirm)
if(request.form.get('minirm2')!=None):
minirm = np.round(ml_model_prediction('model/model_mlpa_min_ir_mode.sav', compound_pa), 1)
np_minirm = np.concatenate((np_properties[33].reshape(1,1), minirm.reshape(1,minirm.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_minirm)
if(request.form.get('pmdiel2')!=None):
pmdiel = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdiel_fromstability_layer2_tf2_1.h5', compound_ef, 1), 4)
np_pmdiel = np.concatenate((np_properties[34].reshape(1,1), pmdiel.reshape(1,pmdiel.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_pmdiel)
if(request.form.get('pmdi2')!=None):
pmdielectric = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturestability_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdi_fromstability_layer6_tf2_1.h5', compound_ef, 3), 4)
np_pmdielectric = np.concatenate((np_properties[35].reshape(1,1), pmdielectric.reshape(1,pmdielectric.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_pmdielectric)
if(request.form.get('pmdiio2')!=None):
pmdiio = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdiio_fromenergy_layer2_tf2_1.h5', compound_ef, 1), 4)
np_pmdiio = np.concatenate((np_properties[36].reshape(1,1), pmdiio.reshape(1,pmdiio.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_pmdiio)
if(request.form.get('pmeij2')!=None):
pmeij = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_naturebandgap_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmeij_frombandgap_layer6_tf2_1.h5', compound_ef, 3), 4)
np_pmeij = np.concatenate((np_properties[37].reshape(1,1), pmeij.reshape(1,pmeij.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_pmeij)
if(request.form.get('pmdij2')!=None):
pmdij = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_natureenergypa_wojarvis_new_trf_tf2_1.h5', 'model/model_feattl_pmdij_fromenergy_layer6_tf2_1.h5', compound_ef, 3), 2)
np_pmdij = np.concatenate((np_properties[38].reshape(1,1), pmdij.reshape(1,pmdij.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_pmdij)
if(request.form.get('exfoli2')!=None):
exfoli = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_exfoli_fromdeltae_layer8_tf2_1.h5', compound_ef, 4), 2)
np_exfoli = np.concatenate((np_properties[39].reshape(1,1), exfoli.reshape(1,exfoli.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_exfoli)
if(request.form.get('exptdeltae2')!=None):
exptdeltae = np.round(model_prediction(model, 'model/model_tl_expt_deltae_fromdeltae_elemnet_tf2_1.h5', compound_ef), 4)
np_exptdeltae = np.concatenate((np_properties[40].reshape(1,1), exptdeltae.reshape(1,exptdeltae.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_exptdeltae)
if(request.form.get('exptbandgap2')!=None):
exptbandgap = np.round(model_prediction_fe(model, model_fe1024, 'model/model_elemnet_nature_wojarvis_new_training-false_tf2_1.h5', 'model/model_feattl_expt_bandgap_fromdeltae_layer4_tf2_1.h5', compound_ef, 2), 4)
np_exptbandgap = np.concatenate((np_properties[41].reshape(1,1), exptbandgap.reshape(1,exptbandgap.shape[0])), axis=1)
select_property.append(np_properties[1])
select_result.append(np_exptbandgap)
results = np.asarray(select_result).reshape(len(select_property), len(np_compounds))
except:
print("Invalid")
np_compounds = np.asarray("Invalid").reshape(1,)
results = np.asarray("Invalid").reshape(1,1)
return render_template('./prediction.html', compounds = np_compounds, results = results)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5040)