-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions.py
220 lines (182 loc) · 9.22 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
np.random.seed(1234567)
import random
random.seed(1234567)
import tensorflow as tf
from tensorflow.keras import Input, Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Activation
from tensorflow.keras import optimizers
from tensorflow.keras.callbacks import EarlyStopping, Callback, ModelCheckpoint
from sklearn import preprocessing
from sklearn.metrics import mean_absolute_error, mean_squared_error, accuracy_score
from tensorflow.python import debug as tf_debug
from pymatgen import Composition
from matminer.featurizers.base import MultipleFeaturizer
from matminer.featurizers import composition as cf
from matminer.utils.conversions import str_to_composition
from collections import Counter
import re, math, operator, sys, argparse, time
import joblib
SEED = 1234567
elements = ['H','Li','Be', 'B', 'C', 'N', 'O', 'F', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl','K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe','Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge','As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd','Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd','Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er','Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu']
featurizer = MultipleFeaturizer([cf.Stoichiometry(), cf.ElementProperty.from_preset("magpie"), cf.ValenceOrbital(props=['avg']), cf.IonProperty(fast=True)])
# Regex to Choose from Element Name, Number and Either of the Brackets
token = re.compile('[A-Z][a-z]?|\d+|[()]')
def toList(string):
li = list(string.split(" "))
return li
# Create a dictionary with the Name of the Element as Key and No. of elements as Value
def count_elements(formula):
tokens = token.findall(formula)
stack = [[]]
for t in tokens:
if t.isalpha():
last = [t]
stack[-1].append(t)
elif t.isdigit():
stack[-1].extend(last*(int(t)-1))
elif t == '(':
stack.append([])
elif t == ')':
last = stack.pop()
stack[-1].extend(last)
return dict(Counter(stack[-1]))
#Normalize the Value of the Dictionary
def normalize_elements(dictionary):
factor=1.0/sum(dictionary.values())
for k in dictionary:
dictionary[k] = dictionary[k]*factor
return dictionary
def input_elements(compounds):
in_elements = np.zeros(shape=(len(compounds), len(elements)))
comp_no = 0
for compound in compounds:
keys = compound.keys()
for key in keys:
in_elements[comp_no][elements.index(key)] = compound[key]
comp_no+=1
data = in_elements
return data
def compound_to_ef(compounds):
compound = [count_elements(x) for x in compounds]
compound = [normalize_elements(x) for x in compound]
compound = input_elements(compound)
return compound
def compound_to_pa(compounds):
compound_obj = [Composition(compound) for compound in compounds]
compound_pa = featurizer.featurize_many(compound_obj, ignore_errors=True)
compound_pa = np.asarray(compound_pa)
return compound_pa
def define_model(data, architecture, num_labels=1, activation='relu', dropouts=[]):
assert '-' in architecture
archs = architecture.strip().split('-')
net = data
pen_layer = net
prev_layer = net
prev_num_outputs = None
prev_block_num_outputs = None
prev_stub_output = net
for i in range(len(archs)):
arch = archs[i]
if 'x' in arch:
arch = arch.split('x')
num_outputs = int(re.findall(r'\d+',arch[0])[0])
layers = int(re.findall(r'\d+',arch[1])[0])
j = 0
aux_layers = re.findall(r'[A-Z]',arch[0])
for l in range(layers):
if aux_layers and aux_layers[0] == 'B':
if len(aux_layers)>1 and aux_layers[1]=='A':
#print('adding fully connected layers with %d outputs followed by batch_norm and act' % num_outputs)
net = Dense(num_outputs,
name='fc' + str(i) + '_' + str(j),
activation=None)(net)
net = BatchNormalization(center=True, scale=True, name='fc_bn'+str(i)+'_'+str(j))(net)
if activation =='relu': net = Activation('relu')(net)
else:
#print('adding fully connected layers with %d outputs followed by batch_norm' % num_outputs)
net = Dense(num_outputs,
name='fc' + str(i) + '_' + str(j),
activation=activation)(net)
net = BatchNormalization(center=True, scale=True,
name='fc_bn' + str(i) + '_' + str(j))(net)
else:
#print('adding fully connected layers with %d outputs' % num_outputs)
net = Dense(num_outputs,
name='fc' + str(i) + '_' + str(j),
activation=activation)(net)
if 'R' in aux_layers:
if prev_num_outputs and prev_num_outputs==num_outputs:
#print('adding residual, both sizes are same')
net = net+prev_layer
else:
#print('adding residual with fc as the size are different')
net = net + Dense(num_outputs,
name='fc' + str(i) + '_' +'dim_'+ str(j),
activation=None)(prev_layer)
prev_num_outputs = num_outputs
j += 1
prev_layer = net
aux_layers_sub = re.findall(r'[A-Z]', arch[1])
if 'R' in aux_layers_sub:
if prev_block_num_outputs and prev_block_num_outputs == num_outputs:
#print('adding residual to stub, both sizes are same')
net = net + prev_stub_output
else:
#print('adding residual to stub with fc as the size are different')
net = net + Dense(num_outputs,
name='fc' + str(i) + '_' + 'stub_dim_' + str(j),
activation=None)(prev_stub_output)
if 'D' in aux_layers_sub and (num_labels == 1) and len(dropouts) > i:
#print('adding dropout', dropouts[i])
net = Dropout(1.-dropouts[i], seed=SEED)(net, training=False)
prev_stub_output = net
prev_block_num_outputs = num_outputs
prev_layer = net
else:
if 'R' in arch:
act_fun = 'relu'
#print('using ReLU at last layer')
else:
act_fun = None
pen_layer = net
#print('adding final layer with ' + str(num_labels) + ' output')
net = Dense(num_labels, name='fc' + str(i),
activation=act_fun)(net)
return net
def model_prediction(model, model_path, data):
model.load_weights(model_path)
adam = optimizers.Adam(lr=0.0001)
model.compile(loss=tf.keras.losses.mean_absolute_error, optimizer=adam, metrics=['mean_absolute_error'])
predict = model.predict(data)
return predict
def model_prediction_fe(model, target_model, model_path, target_model_path, data, layer_no):
model.load_weights(model_path)
adam = optimizers.Adam(lr=0.0001)
model.compile(loss=tf.keras.losses.mean_absolute_error, optimizer=adam, metrics=['mean_absolute_error'])
extractor = tf.keras.models.Model(inputs=model.inputs, outputs=[layer.output for layer in model.layers])
features = extractor(data)
feature = features[layer_no].numpy()
target_model.load_weights(target_model_path)
adam = optimizers.Adam(lr=0.0001)
target_model.compile(loss=tf.keras.losses.mean_absolute_error, optimizer=adam, metrics=['mean_absolute_error'])
predict = target_model.predict(feature)
return predict
def ml_model_prediction(target_model_path, data):
loaded_model = joblib.load(target_model_path)
predict = loaded_model.predict(data)
return predict
def ml_model_prediction_fe(model, model_path, target_model_path, data, layer_no):
model.load_weights(model_path)
adam = optimizers.Adam(lr=0.0001)
model.compile(loss=tf.keras.losses.mean_absolute_error, optimizer=adam, metrics=['mean_absolute_error'])
extractor = tf.keras.models.Model(inputs=model.inputs, outputs=[layer.output for layer in model.layers])
features = extractor(data)
feature = features[layer_no].numpy()
loaded_model = joblib.load(target_model_path)
predict = loaded_model.predict(feature)
return predict