-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfgsm.py
182 lines (169 loc) · 6.46 KB
/
fgsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import numpy as np
import tensorflow as tf
import math
from tensorflow.examples.tutorials.mnist import input_data as mnist_data
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#STEP 2 - Architecture selection
# Here all the DNN architecture is created
def model(x, logits=False, training=False):
with tf.variable_scope('conv0'):
z = tf.layers.conv2d(x, filters=32, kernel_size=[2, 2], padding='same', activation=tf.nn.relu)
z = tf.layers.max_pooling2d(z, pool_size=[2, 2], strides=2)
with tf.variable_scope('conv1'):
z = tf.layers.conv2d(z, filters=64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu)
z = tf.layers.max_pooling2d(z, pool_size=[2, 2], strides=2)
with tf.variable_scope('flat'):
shape = z.get_shape().as_list()
z = tf.reshape(z, [-1, np.prod(shape[1:])])
l_layer = tf.layers.dense(z, units=10, name='logits')
y = tf.nn.softmax(l_layer, name='ybar')
if logits:
return y, l_layer
return y
#FGSM
def fgm(model, x, eps=0.01, epochs=1, sign=True, clip_min=0, clip_max=1):
xadv = tf.identity(x)
ybar = model(xadv)
yshape = ybar.get_shape().as_list()
ydim = yshape[1]
indices = tf.argmax(ybar, axis=1)
target = tf.cond(
tf.equal(ydim,1),
lambda: tf.nn.relu(tf.sign(ybar-0.5)),
lambda: tf.one_hot(indices, ydim, on_value=1.0, off_value=0.0))
loss_fn = tf.nn.softmax_cross_entropy_with_logits_v2
noise_fn = tf.sign
eps = tf.abs(eps)
def cond(xadv, i):
return tf.less(i, epochs)
def body(xadv, i):
ybar, logits = model(xadv, logits=True)
loss = loss_fn(labels=target, logits=logits)
dy_dx, = tf.gradients(loss, xadv)
xadv = tf.stop_gradient(xadv + eps*noise_fn(dy_dx))
xadv = tf.clip_by_value(xadv, clip_min, clip_max)
return xadv, i+1
xadv, _ = tf.while_loop(cond, body, (xadv, 0), back_prop=False, name='fast_gradient')
return xadv
# CLASS ENVIRONMENT DEFINITION, BEFORE RUNNING MAIN
class Environment():
pass
ambiente = Environment()
with tf.variable_scope('model'):
ambiente.x = tf.placeholder(tf.float32, (None, 28, 28, 1))
ambiente.y = tf.placeholder(tf.float32, (None, 10), name='y')
# calls model (STEP 2)
ambiente.ybar, logits = model(ambiente.x, logits=True)
with tf.variable_scope('acc'):
count = tf.equal(tf.argmax(ambiente.y, axis=1), tf.argmax(ambiente.ybar, axis=1))
ambiente.acc = tf.reduce_mean(tf.cast(count, tf.float32), name='acc')
with tf.variable_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=ambiente.y, logits=logits)
ambiente.loss = tf.reduce_mean(cross_entropy, name='loss')
with tf.variable_scope('train_op'):
optimizer = tf.train.AdamOptimizer()
ambiente.train_op = optimizer.minimize(ambiente.loss)
with tf.variable_scope('model', reuse=True):
ambiente.fgsm_eps = tf.placeholder(tf.float32, (), name='fgsm_eps')
ambiente.fgsm_epochs = tf.placeholder(tf.int32, (), name='fgsm_epochs')
ambiente.x_fgsm = fgm(model, ambiente.x, epochs=ambiente.fgsm_epochs, eps=ambiente.fgsm_eps)
#STEP 4 - Training
def training(sess, ambiente, X_data, Y_data, X_valid=None, y_valid=None, shuffle=True, batch=128, epochs=1):
Xshape = X_data.shape
n_data = Xshape[0]
n_batches = int(n_data/batch)
print(X_data.shape)
for ep in range(epochs):
print('epoch number: ', ep+1)
if shuffle:
ind = np.arange(n_data)
np.random.shuffle(ind)
X_data = X_data[ind]
Y_data = Y_data[ind]
for i in range(n_batches):
print(' batch {0}/{1}'.format(i + 1, n_batches), end='\r')
start = i*batch
end = min(start+batch, n_data)
sess.run(ambiente.train_op, feed_dict={ambiente.x: X_data[start:end], ambiente.y: Y_data[start:end]})
evaluate(sess, ambiente, X_valid, y_valid)
def evaluate(sess, ambiente, X_test, Y_test, batch=128):
n_data = X_test.shape[0]
n_batches = int(n_data/batch)
totalAcc = 0
totalLoss = 0
for i in range(n_batches):
print(' batch {0}/{1}'.format(i + 1, n_batches), end='\r')
start = i*batch
end = min(start+batch, n_data)
batch_X = X_test[start:end]
batch_Y = Y_test[start:end]
batch_loss, batch_acc = sess.run([ambiente.loss, ambiente.acc], feed_dict={ambiente.x: batch_X, ambiente.y: batch_Y})
totalAcc = totalAcc + batch_acc*(end-start)
totalLoss = totalLoss + batch_loss*(end-start)
totalAcc = totalAcc/n_data
totalLoss = totalLoss/n_data
print('acc: {0:.3f} loss: {1:.3f}'.format(totalAcc, totalLoss))
return totalAcc, totalLoss
def perform_fgsm(sess, ambiente, X_data, epochs=1, eps=0.01, batch_size=128):
print('\nInizio FGSM')
n_sample = X_data.shape[0]
n_batch = int((n_sample + batch_size - 1) / batch_size)
X_adv = np.empty_like(X_data)
for batch in range(n_batch):
print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r')
start = batch * batch_size
end = min(n_sample, start + batch_size)
adv = sess.run(ambiente.x_fgsm, feed_dict={
ambiente.x: X_data[start:end],
ambiente.fgsm_eps: eps,
ambiente.fgsm_epochs: epochs})
X_adv[start:end] = adv
print()
return X_adv
def main():
#STEP 1 - Initial Dataset Collection
old_v = tf.logging.get_verbosity()
tf.logging.set_verbosity(tf.logging.ERROR)
# read images from dataset
mnist = mnist_data.read_data_sets("data", one_hot=True, reshape=False, validation_size=0)
X_train = mnist.train.images
y_train = mnist.train.labels
X_test = mnist.test.images
y_test = mnist.test.labels
tf.logging.set_verbosity(old_v)
# 90% of dataset is training set, 10% is validation set
i = int(X_train.shape[0] * 0.9)
X_validate = X_train[i:]
X_train = X_train[:i]
y_validate = y_train[i:]
y_train = y_train[:i]
# start tensorflow session
# runs STEP 2
sess = tf.InteractiveSession() # ENVIRONMENT -> MODEL -> FGM
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# runs training and evaluating
# STEP 4
training(sess, ambiente, X_train, y_train, X_validate, y_validate, shuffle=False, batch=128, epochs=5)
evaluate(sess, ambiente, X_test, y_test)
X_adv = perform_fgsm(sess, ambiente, X_test, eps=0.02, epochs=12)
evaluate(sess, ambiente, X_adv, y_test)
if __name__ == "__main__":
main()
# MAIN:
# STEP 1
# DATASET COLLECTION
# STEP 2
# INTERACTIVE SESSION -> ENVIRONMENT:
# MODEL
# FGM (ADVERSARIAL MODEL)
# STEP 3
# LABELING
# STEP 4
# TRAINING
# EVALUATE
# PERFORM_FGSM
# EVALUATE
# STEP 5
# AUGMENTATION