-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
135 lines (115 loc) · 4.67 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import sys
import threading
import queue
import random
import collections
import torch
import torch.multiprocessing as multiprocessing
from torch._C import _set_worker_signal_handlers
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataloader import _DataLoaderIter
from torch.utils.data import _utils
if sys.version_info[0] == 2:
import Queue as queue
else:
import queue
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id):
global _use_shared_memory
_use_shared_memory = True
_set_worker_signal_handlers()
torch.set_num_threads(1)
torch.manual_seed(seed)
while True:
r = index_queue.get()
if r is None:
break
idx, batch_indices = r
try:
idx_scale = 0
if len(scale) > 1 and dataset.train:
idx_scale = random.randrange(0, len(scale))
dataset.set_scale(idx_scale)
samples = collate_fn([dataset[i] for i in batch_indices])
samples.append(idx_scale)
except Exception:
data_queue.put((idx, _utils.ExceptionWrapper(sys.exc_info())))
else:
data_queue.put((idx, samples))
class _MSDataLoaderIter(_DataLoaderIter):
def __init__(self, loader):
self.dataset = loader.dataset
self.scale = loader.scale
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queues = [
multiprocessing.Queue() for _ in range(self.num_workers)
]
self.worker_queue_idx = 0
self.worker_result_queue = multiprocessing.Queue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
base_seed = torch.LongTensor(1).random_()[0]
self.workers = [
multiprocessing.Process(
target=_ms_loop,
args=(
self.dataset,
self.index_queues[i],
self.worker_result_queue,
self.collate_fn,
self.scale,
base_seed + i,
self.worker_init_fn,
i
)
)
for i in range(self.num_workers)]
if self.pin_memory or self.timeout > 0:
self.data_queue = queue.Queue()
if self.pin_memory:
maybe_device_id = torch.cuda.current_device()
else:
# do not initialize cuda context if not necessary
maybe_device_id = None
self.pin_memory_thread = threading.Thread(
target=_utils.pin_memory._pin_memory_loop,
args=(self.worker_result_queue, self.data_queue, maybe_device_id, self.done_event))
self.pin_memory_thread.daemon = True
self.pin_memory_thread.start()
else:
self.data_queue = self.worker_result_queue
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
_utils.signal_handling._set_worker_pids(id(self), tuple(w.pid for w in self.workers))
_utils.signal_handling._set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
class MSDataLoader(DataLoader):
def __init__(
self, args, dataset, batch_size=1, shuffle=False,
sampler=None, batch_sampler=None,
collate_fn=_utils.collate.default_collate, pin_memory=False, drop_last=False,
timeout=0, worker_init_fn=None):
super(MSDataLoader, self).__init__(
dataset, batch_size=batch_size, shuffle=shuffle,
sampler=sampler, batch_sampler=batch_sampler,
num_workers=args.n_threads, collate_fn=collate_fn,
pin_memory=pin_memory, drop_last=drop_last,
timeout=timeout, worker_init_fn=worker_init_fn)
self.scale = args.scale
def __iter__(self):
return _MSDataLoaderIter(self)