Skip to content

Latest commit

 

History

History
80 lines (54 loc) · 6.56 KB

Regression.md

File metadata and controls

80 lines (54 loc) · 6.56 KB
layout title permalink
default
Regression Analysis
/teaching/regression

RDA1_logo

# Regression Analysis

This class is all about applying regression analysis and linear models, including generalized linear models, mediation and moderation, with a little bit of machine learning techniques thrown in. The book we'll use throughout the class, and that drives the structure of the lecture slides, is Regression Analysis and Linear Models by Richard Darlington and Andrew Hayes. This course uses R and RStudio for all data analyses.

We will use several different data sets during the course:

  • A subset of the [General Social Survey]({{ site.slidesurl }}/EDUC-7610/GSS_Data/Data/GSS_reduced_example.csv)
  • A [data set used in Quas et al. about high risk youth]({{ site.slidesurl }}/EDUC-7610/HighRisk_Data/HighRisk.csv) data set
  • A [data set regarding poverty, violence, and teen birth rates per state]({{ site.slidesurl }}/EDUC-7610/Poverty_Data/poverty.xlsx)
  • A [small (ficticious) data set about The Office (US) and Parks and Recreation television shows]({{ base.url }}/assets/Data/OfficeParks.csv)
  • A [data set about the passengers of the titanic]({{ base.url }}/assets/Data/Titanic.csv)
  • A [fictious data set about the "Married At First Sight" TV show]({{ base.url }}/assets/Data/mafs.csv)

We may also pull from FiveThirtyEight's open data on GitHub occassionally throughout the class (many of these data sets can be used for your class project as well if they have both continuous and categorical predictors).

[Syllabus]({{ site.baseurl }}/syllabus/educ7610)

Class Materials

Unit 1

[In-Class Material RMD]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/InClass/InClass1.Rmd)

Lecture Slides and Materials Recorded Lecture
L0: Intro to the class [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 1/L0_EDUC7610_Intro.pptx)
L1: Intro to R and RStudio [HTML]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 1/L1_EDUC7610_IntroR.html) Intro to R
L2: Causation [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 1/L2_EDUC7610_causation.pptx) Causation
L3: Simple Regression [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 1/L3_EDUC7610_simple_reg.pptx) Simple Regression
L4: Multiple Regression [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 1/L4_EDUC7610_multiple.pptx) Multiple Regression
L5: Categorical Predictors [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 1/L5_EDUC7610_CategoricalPredictors.pptx) Categorical Predictors

Unit 2

[In-Class Material RMD]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/InClass/InClass2.Rmd)

Lecture Slides and Materials Recorded Lecture
L6: Statistical Inference [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 2/L6_EDUC7610_inference.pptx) Inference Part 1 & Inference Part 2
L7: Model Diagnostics [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 2/L7_EDUC7610_diagnostics.pptx) Diagnostics Part 1 & Diagnostics Part 2
L8: Missing Data & Such [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 2/L8_EDUC7610_missingdata.pptx) Missing Data
L9: Threats to Validity [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 2/L9_EDUC7610_validity.pptx) Threats to Validity

Unit 3

[In-Class Material RMD]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/InClass/InClass3.Rmd)

Lecture Slides and Materials Recorded Lecture
L10: Effect Sizes [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 3/L10_EDUC7610_EffectSize.pptx) Effect Size
L11: Linear Interactions [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 3/L11_EDUC7610_interactions.pptx) Interactions Part 1 & Interactions Part 2
L12: Nonlinear Relationships [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 3/L12_EDUC7610_nonlinear.pptx) Nonlinear
L13: Intro to GLMs [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 3/L13_EDUC7610_glm.pptx) Intro to GLMs

Unit 4

[In-Class Material RMD]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/InClass/InClass4.Rmd)

Lecture Slides and Materials Recorded Lecture
L14: Logistic Regression [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 4/L14_EDUC7610_logistic.pptx) Logistic Regression
L15: Other GLMs [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 4/L15_EDUC7610_otherglm.pptx) Other GLMs
L16: Mediation Analysis HTML Mediation Analysis
L17: Miscellaneous [PPTX]({{ site.slidesurl }}/EDUC-7610/Slides-Flipped/Unit 4/L17_EDUC7610_misc_updatedclean.pptx)

Final Project

[Here's]({{ site.url }}/assets/Course Materials/EDUC7610/Example Final Project.pdf) an example of a final project from a few years ago. This follows the template well but doesn't necessarily have all the stuff in it (e.g., they could have included a DAG, a plot of the data other than the diagnostics), but this shows understanding of the material so it receive a high grade.