-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathhard_example_utils.py
56 lines (45 loc) · 1.61 KB
/
hard_example_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import random
def subsample_nns(query_seq, nns, names, n_seqs_to_sample, remove_query=True):
random.shuffle(nns)
nn_names = [names[n] for n in nns]
nn_seqs = [x.split("/")[-2] for x in nn_names]
seq_to_nns = {}
for nn, nn_seq in zip(nns, nn_seqs):
if nn_seq not in seq_to_nns:
seq_to_nns[nn_seq] = []
seq_to_nns[nn_seq].append(nn)
#seq_to_n = sorted([(k, len(v)) for k, v in seq_to_nns.items()], key=lambda x: x[1], reverse=True)
#n_total = sum(x[1] for x in seq_to_n)
#for seq, n_in_seqs in seq_to_n:
# pct = n_in_seqs * 100 / n_total
# if pct > 1.0:
# print(seq, pct, "%")
#print("n_seqs in nns", len(seq_to_nns))
sampled_nns = []
sample_seqs = set(seq_to_nns.keys())
if remove_query:
sample_seqs.remove(query_seq)
sample_seqs = list(sample_seqs)
random.shuffle(sample_seqs)
sample_seqs = sample_seqs[:n_seqs_to_sample]
# get 1 per sequence
for seq in sample_seqs:
seq_nns = seq_to_nns[seq]
nn = random.choice(seq_nns)
sampled_nns.append(nn)
return sampled_nns
def subsample_nns_old(name, nns, names, n_seqs_to_sample):
random.shuffle(nns)
nn_names = [names[n] for n in nns]
nn_seqs = [x.split("/")[-2] for x in nn_names]
seq = name.split("/")[-2]
sampled_nns = []
sampled_seqs = set()
sampled_seqs.add(seq)
# get 1 per sequence
for nn, seq in zip(nns, nn_seqs):
if seq not in sampled_seqs:
sampled_seqs.add(seq)
sampled_nns.append(nn)
sampled_nns = sampled_nns[:n_seqs_to_sample]
return sampled_nns