forked from MAYANK25402/Hactober-2023-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBox Stacking Problem
108 lines (90 loc) · 2.65 KB
/
Box Stacking Problem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/* Dynamic Programming implementation of Box Stacking problem */
#include<stdio.h>
#include<stdlib.h>
/* Representation of a box */
struct Box
{
// h --> height, w --> width, d --> depth
int h, w, d; // for simplicity of solution, always keep w <= d
};
// A utility function to get minimum of two integers
int min (int x, int y)
{ return (x < y)? x : y; }
// A utility function to get maximum of two integers
int max (int x, int y)
{ return (x > y)? x : y; }
/* Following function is needed for library function qsort(). We
use qsort() to sort boxes in decreasing order of base area.
Refer following link for help of qsort() and compare()
http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */
int compare (const void *a, const void * b)
{
return ( (*(Box *)b).d * (*(Box *)b).w ) -
( (*(Box *)a).d * (*(Box *)a).w );
}
/* Returns the height of the tallest stack that can be
formed with give type of boxes */
int maxStackHeight( Box arr[], int n )
{
/* Create an array of all rotations of given boxes
For example, for a box {1, 2, 3}, we consider three
instances{{1, 2, 3}, {2, 1, 3}, {3, 1, 2}} */
Box rot[3*n];
int index = 0;
for (int i = 0; i < n; i++)
{
// Copy the original box
rot[index].h = arr[i].h;
rot[index].d = max(arr[i].d, arr[i].w);
rot[index].w = min(arr[i].d, arr[i].w);
index++;
// First rotation of box
rot[index].h = arr[i].w;
rot[index].d = max(arr[i].h, arr[i].d);
rot[index].w = min(arr[i].h, arr[i].d);
index++;
// Second rotation of box
rot[index].h = arr[i].d;
rot[index].d = max(arr[i].h, arr[i].w);
rot[index].w = min(arr[i].h, arr[i].w);
index++;
}
// Now the number of boxes is 3n
n = 3*n;
/* Sort the array 'rot[]' in non-increasing order
of base area */
qsort (rot, n, sizeof(rot[0]), compare);
// Uncomment following two lines to print all rotations
// for (int i = 0; i < n; i++ )
// printf("%d x %d x %d\n", rot[i].h, rot[i].w, rot[i].d);
/* Initialize msh values for all indexes
msh[i] --> Maximum possible Stack Height with box i on top */
int msh[n];
for (int i = 0; i < n; i++ )
msh[i] = rot[i].h;
/* Compute optimized msh values in bottom up manner */
for (int i = 1; i < n; i++ )
for (int j = 0; j < i; j++ )
if ( rot[i].w < rot[j].w &&
rot[i].d < rot[j].d &&
msh[i] < msh[j] + rot[i].h
)
{
msh[i] = msh[j] + rot[i].h;
}
/* Pick maximum of all msh values */
int max = -1;
for ( int i = 0; i < n; i++ )
if ( max < msh[i] )
max = msh[i];
return max;
}
/* Driver program to test above function */
int main()
{
Box arr[] = { {4, 6, 7}, {1, 2, 3}, {4, 5, 6}, {10, 12, 32} };
int n = sizeof(arr)/sizeof(arr[0]);
printf("The maximum possible height of stack is %d\n",
maxStackHeight (arr, n) );
return 0;
}