-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsha-256.c
178 lines (156 loc) · 6.62 KB
/
sha-256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
* This code is from https://github.com/amosnier/sha-2 author: @amosnier Alain Mosnier, jan2000
*/
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "sha-256.h"
#define CHUNK_SIZE 64
#define INT64_SIZE 8
/*
* Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
* When useful for clarification, portions of the pseudo-code are reproduced here too.
*/
/*
* Initialize array of round constants:
* (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
*/
static const uint32_t k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static inline uint32_t right_rot(uint32_t value, unsigned int count)
{
/*
* Defined behaviour in standard C for all count where 0 < count < 32,
* which is what we need here.
*/
return value >> count | value << (32 - count);
}
/*
* Limitations:
* - Since input is a pointer in RAM, the data to hash should be in RAM, which could be a problem
* for large data sizes.
* - SHA algorithms theoretically operate on bit strings. However, this implementation has no support
* for bit string lengths that are not multiples of eight, and it really operates on arrays of bytes.
* In particular, the len parameter is a number of bytes.
*/
bool calc_sha_256(void* hash_raw, const void * input, size_t len)
{
uint8_t* hash = (uint8_t*)hash_raw;
/*
* Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32.
* Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63
* Note 3: The compression function uses 8 working variables, a through h
* Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
* and when parsing message block data from bytes to words, for example,
* the first word of the input message "abc" after padding is 0x61626380
*/
unsigned i, j;
/* The length of the original message in bits as a 64-bit big-endian integer */
uint8_t total_len[INT64_SIZE];
for (i = 0; i < INT64_SIZE; i++)
total_len[i] = (uint8_t) ((len << 3) >> ((INT64_SIZE - i - 1) * 8));
/*
* Initialize hash values:
* (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
*/
uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
/* Reserve a chunk for Pre-processing */
uint8_t processed_chunk[CHUNK_SIZE];
/* Process the message and additional appended bytes in successive 512-bit chunks */
const uint8_t *input_end = (uint8_t *) input + len;
for (const uint8_t *chunk = input; chunk < input_end + 1 + INT64_SIZE; chunk += CHUNK_SIZE) {
const uint8_t *p;
if (chunk + CHUNK_SIZE <= input_end) {
/* Normal processing */
p = chunk;
} else {
/*
* Pre-processing, append the following to the input:
* - A single '1' bit
* - Padding with '0' bits so that all chunks are 512-bit
* - The 64-bit message length at the end
*/
memset(processed_chunk, 0, CHUNK_SIZE);
if (chunk == input_end) {
/* Input ended exactly at the end of previous chunk, start this chunk with the single '1' bit */
processed_chunk[0] = 0x80;
} else if (chunk < input_end) {
/* Copy the last bytes of input to this chunk, followed by the single '1' bit */
memcpy(processed_chunk, chunk, input_end - chunk);
processed_chunk[input_end - chunk] = 0x80;
}
/* Add the 64-bit message length if it fits in this chunk, otherwise in the next chunk */
if (chunk + CHUNK_SIZE >= input_end + 1 + INT64_SIZE)
memcpy(&processed_chunk[CHUNK_SIZE - INT64_SIZE], total_len, INT64_SIZE);
p = processed_chunk;
}
uint32_t ah[8];
/* Initialize working variables to current hash value: */
for (i = 0; i < 8; i++)
ah[i] = h[i];
/* Compression function main loop: */
for (i = 0; i < 4; i++) {
/*
* The w-array is really w[64], but since we only need
* 16 of them at a time, we save stack by calculating
* 16 at a time.
*
* This optimization was not there initially and the
* rest of the comments about w[64] are kept in their
* initial state.
*/
/*
* create a 64-entry message schedule array w[0..63] of 32-bit words
* (The initial values in w[0..63] don't matter, so many implementations zero them here)
* copy chunk into first 16 words w[0..15] of the message schedule array
*/
uint32_t w[16];
for (j = 0; j < 16; j++) {
if (i == 0) {
w[j] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 |
(uint32_t) p[2] << 8 | (uint32_t) p[3];
p += 4;
} else {
/* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */
const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^ (w[(j + 1) & 0xf] >> 3);
const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^ right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
}
const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
const uint32_t temp2 = s0 + maj;
ah[7] = ah[6];
ah[6] = ah[5];
ah[5] = ah[4];
ah[4] = ah[3] + temp1;
ah[3] = ah[2];
ah[2] = ah[1];
ah[1] = ah[0];
ah[0] = temp1 + temp2;
}
}
/* Add the compressed chunk to the current hash value: */
for (i = 0; i < 8; i++)
h[i] += ah[i];
}
/* Produce the final hash value (big-endian): */
for (i = 0, j = 0; i < 8; i++)
{
hash[j++] = (uint8_t) (h[i] >> 24);
hash[j++] = (uint8_t) (h[i] >> 16);
hash[j++] = (uint8_t) (h[i] >> 8);
hash[j++] = (uint8_t) h[i];
}
return true;
}