diff --git a/CHANGELOG.md b/CHANGELOG.md index 94a0fd3263..e02ff2dc30 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -118,25 +118,9 @@ New modules Algebra.Module.Bundles.Raw ``` -* Properties of `List` modulo `Setoid` equality (currently only the ([],++) monoid): - ``` - Data.List.Relation.Binary.Equality.Setoid.Properties - ``` - -* Refactoring of `Data.List.Base.{scanr|scanl}` and their properties: - ``` - Data.List.Scans.Base - Data.List.Scans.Properties - ``` - -* Prime factorisation of natural numbers. - ``` - Data.Nat.Primality.Factorisation - ``` - -* Consequences of 'infinite descent' for (accessible elements of) well-founded relations: +* Nagata's construction of the "idealization of a module": ```agda - Induction.InfiniteDescent + Algebra.Module.Construct.Idealization ``` * The unique morphism from the initial, resp. terminal, algebra: @@ -145,9 +129,22 @@ New modules Algebra.Morphism.Construct.Terminal ``` -* Nagata's construction of the "idealization of a module": +* Pointwise and equality relations over indexed containers: ```agda - Algebra.Module.Construct.Idealization + Data.Container.Indexed.Relation.Binary.Pointwise + Data.Container.Indexed.Relation.Binary.Pointwise.Properties + Data.Container.Indexed.Relation.Binary.Equality.Setoid + ``` + +* Refactoring of `Data.List.Base.{scanr|scanl}` and their properties: + ``` + Data.List.Scans.Base + Data.List.Scans.Properties + ``` + +* Properties of `List` modulo `Setoid` equality (currently only the ([],++) monoid): + ``` + Data.List.Relation.Binary.Equality.Setoid.Properties ``` * `Data.List.Relation.Binary.Sublist.Propositional.Slice` @@ -155,6 +152,12 @@ New modules and adding new functions: - `⊆-upper-bound-is-cospan` generalising `⊆-disjoint-union-is-cospan` from (*) - `⊆-upper-bound-cospan` generalising `⊆-disjoint-union-cospan` from (*) + ``` + +* Prime factorisation of natural numbers. + ``` + Data.Nat.Primality.Factorisation + ``` * `Data.Vec.Functional.Relation.Binary.Permutation`, defining: ```agda @@ -180,6 +183,11 @@ New modules _⇨_ = setoid ``` +* Consequences of 'infinite descent' for (accessible elements of) well-founded relations: + ```agda + Induction.InfiniteDescent + ``` + * Symmetric interior of a binary relation ``` Relation.Binary.Construct.Interior.Symmetric @@ -190,12 +198,11 @@ New modules Relation.Binary.Properties.DecSetoid ``` -* Pointwise and equality relations over indexed containers: +* Systematise the use of `Recomputable A = .A → A`: ```agda - Data.Container.Indexed.Relation.Binary.Pointwise - Data.Container.Indexed.Relation.Binary.Pointwise.Properties - Data.Container.Indexed.Relation.Binary.Equality.Setoid + Relation.Nullary.Recomputable ``` + with `Recomputable` exported publicly from `Relation.Nullary`. * New IO primitives to handle buffering ```agda @@ -372,6 +379,11 @@ Additions to existing modules Subtrees o c = (r : Response c) → X (next c r) ``` +* In `Data.Empty`: + ```agda + ⊥-elim-irr : .⊥ → Whatever + ``` + * In `Data.Fin.Properties`: ```agda nonZeroIndex : Fin n → ℕ.NonZero n @@ -674,7 +686,7 @@ Additions to existing modules * Added new definitions in `Relation.Binary.Definitions` ``` Stable _∼_ = ∀ x y → Nullary.Stable (x ∼ y) - Empty _∼_ = ∀ {x y} → x ∼ y → ⊥ + Empty _∼_ = ∀ {x y} → ¬ (x ∼ y) ``` * Added new proofs in `Relation.Binary.Properties.Setoid`: @@ -690,11 +702,27 @@ Additions to existing modules WeaklyDecidable : Set _ ``` +* Added new proof in `Relation.Nullary.Decidable.Core`: + ```agda + recompute-constant : (a? : Dec A) (p q : A) → recompute a? p ≡ recompute a? q + ``` + * Added new proof in `Relation.Nullary.Decidable`: ```agda ⌊⌋-map′ : (a? : Dec A) → ⌊ map′ t f a? ⌋ ≡ ⌊ a? ⌋ ``` +* Added new definitions in `Relation.Nullary.Negation.Core`: + ```agda + contradiction-irr : .A → ¬ A → Whatever + ``` + +* Added new definitions in `Relation.Nullary.Reflects`: + ```agda + recompute : Reflects A b → Recomputable A + recompute-constant : (r : Reflects A b) (p q : A) → recompute r p ≡ recompute r q + ``` + * Added new definitions in `Relation.Unary` ``` Stable : Pred A ℓ → Set _ diff --git a/src/Axiom/UniquenessOfIdentityProofs.agda b/src/Axiom/UniquenessOfIdentityProofs.agda index 74463fe557..670941afb1 100644 --- a/src/Axiom/UniquenessOfIdentityProofs.agda +++ b/src/Axiom/UniquenessOfIdentityProofs.agda @@ -8,15 +8,19 @@ module Axiom.UniquenessOfIdentityProofs where -open import Data.Bool.Base using (true; false) -open import Data.Empty -open import Relation.Nullary.Reflects using (invert) -open import Relation.Nullary hiding (Irrelevant) +open import Level using (Level) +open import Relation.Nullary.Decidable.Core using (recompute; recompute-constant) open import Relation.Binary.Core open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality.Core open import Relation.Binary.PropositionalEquality.Properties +private + variable + a : Level + A : Set a + x y : A + ------------------------------------------------------------------------ -- Definition -- @@ -24,7 +28,7 @@ open import Relation.Binary.PropositionalEquality.Properties -- equality are themselves equal. In other words, the equality relation -- is irrelevant. Here we define UIP relative to a given type. -UIP : ∀ {a} (A : Set a) → Set a +UIP : (A : Set a) → Set a UIP A = Irrelevant {A = A} _≡_ ------------------------------------------------------------------------ @@ -39,11 +43,11 @@ UIP A = Irrelevant {A = A} _≡_ -- the image of any other proof. module Constant⇒UIP - {a} {A : Set a} (f : _≡_ {A = A} ⇒ _≡_) - (f-constant : ∀ {a b} (p q : a ≡ b) → f p ≡ f q) + (f : _≡_ {A = A} ⇒ _≡_) + (f-constant : ∀ {x y} (p q : x ≡ y) → f p ≡ f q) where - ≡-canonical : ∀ {a b} (p : a ≡ b) → trans (sym (f refl)) (f p) ≡ p + ≡-canonical : (p : x ≡ y) → trans (sym (f refl)) (f p) ≡ p ≡-canonical refl = trans-symˡ (f refl) ≡-irrelevant : UIP A @@ -59,19 +63,14 @@ module Constant⇒UIP -- function over proofs of equality which is constant: it returns the -- proof produced by the decision procedure. -module Decidable⇒UIP - {a} {A : Set a} (_≟_ : DecidableEquality A) +module Decidable⇒UIP (_≟_ : DecidableEquality A) where ≡-normalise : _≡_ {A = A} ⇒ _≡_ - ≡-normalise {a} {b} a≡b with a ≟ b - ... | true because [p] = invert [p] - ... | false because [¬p] = ⊥-elim (invert [¬p] a≡b) - - ≡-normalise-constant : ∀ {a b} (p q : a ≡ b) → ≡-normalise p ≡ ≡-normalise q - ≡-normalise-constant {a} {b} p q with a ≟ b - ... | true because _ = refl - ... | false because [¬p] = ⊥-elim (invert [¬p] p) + ≡-normalise {x} {y} x≡y = recompute (x ≟ y) x≡y + + ≡-normalise-constant : (p q : x ≡ y) → ≡-normalise p ≡ ≡-normalise q + ≡-normalise-constant {x = x} {y = y} = recompute-constant (x ≟ y) ≡-irrelevant : UIP A ≡-irrelevant = Constant⇒UIP.≡-irrelevant ≡-normalise ≡-normalise-constant diff --git a/src/Data/Empty.agda b/src/Data/Empty.agda index 19754e8c7d..d2647a1f18 100644 --- a/src/Data/Empty.agda +++ b/src/Data/Empty.agda @@ -35,3 +35,6 @@ private ⊥-elim : ∀ {w} {Whatever : Set w} → ⊥ → Whatever ⊥-elim () + +⊥-elim-irr : ∀ {w} {Whatever : Set w} → .⊥ → Whatever +⊥-elim-irr () diff --git a/src/Relation/Binary/Definitions.agda b/src/Relation/Binary/Definitions.agda index 0e3f09e443..167b63a8cb 100644 --- a/src/Relation/Binary/Definitions.agda +++ b/src/Relation/Binary/Definitions.agda @@ -12,8 +12,6 @@ module Relation.Binary.Definitions where open import Agda.Builtin.Equality using (_≡_) -open import Data.Empty using (⊥) -open import Data.Maybe.Base using (Maybe) open import Data.Product.Base using (_×_; ∃-syntax) open import Data.Sum.Base using (_⊎_) open import Function.Base using (_on_; flip) @@ -248,7 +246,7 @@ Universal _∼_ = ∀ x y → x ∼ y -- Empty - no elements are related Empty : REL A B ℓ → Set _ -Empty _∼_ = ∀ {x y} → x ∼ y → ⊥ +Empty _∼_ = ∀ {x y} → ¬ (x ∼ y) -- Non-emptiness - at least one pair of elements are related. diff --git a/src/Relation/Nullary.agda b/src/Relation/Nullary.agda index 92e0607f4d..5ea302fd98 100644 --- a/src/Relation/Nullary.agda +++ b/src/Relation/Nullary.agda @@ -23,8 +23,9 @@ private ------------------------------------------------------------------------ -- Re-exports +open import Relation.Nullary.Recomputable public using (Recomputable) open import Relation.Nullary.Negation.Core public -open import Relation.Nullary.Reflects public +open import Relation.Nullary.Reflects public hiding (recompute; recompute-constant) open import Relation.Nullary.Decidable.Core public ------------------------------------------------------------------------ @@ -33,13 +34,6 @@ open import Relation.Nullary.Decidable.Core public Irrelevant : Set p → Set p Irrelevant P = ∀ (p₁ p₂ : P) → p₁ ≡ p₂ ------------------------------------------------------------------------- --- Recomputability - we can rebuild a relevant proof given an --- irrelevant one. - -Recomputable : Set p → Set p -Recomputable P = .P → P - ------------------------------------------------------------------------ -- Weak decidability -- `nothing` is 'don't know'/'give up'; `just` is `yes`/`definitely` diff --git a/src/Relation/Nullary/Decidable.agda b/src/Relation/Nullary/Decidable.agda index 4335a5df5a..4b28ed43f1 100644 --- a/src/Relation/Nullary/Decidable.agda +++ b/src/Relation/Nullary/Decidable.agda @@ -9,15 +9,14 @@ module Relation.Nullary.Decidable where open import Level using (Level) -open import Data.Bool.Base using (true; false; if_then_else_) -open import Data.Empty using (⊥-elim) +open import Data.Bool.Base using (true; false) open import Data.Product.Base using (∃; _,_) -open import Function.Base open import Function.Bundles using (Injection; module Injection; module Equivalence; _⇔_; _↔_; mk↔ₛ′) open import Relation.Binary.Bundles using (Setoid; module Setoid) open import Relation.Binary.Definitions using (Decidable) -open import Relation.Nullary +open import Relation.Nullary using (Irrelevant) +open import Relation.Nullary.Negation.Core using (¬_; contradiction) open import Relation.Nullary.Reflects using (invert) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; sym; trans; cong′) @@ -52,8 +51,8 @@ via-injection inj _≟_ x y = map′ injective cong (to x ≟ to y) -- A lemma relating True and Dec True-↔ : (a? : Dec A) → Irrelevant A → True a? ↔ A -True-↔ (true because [a]) irr = mk↔ₛ′ (λ _ → invert [a]) _ (irr (invert [a])) cong′ -True-↔ (false because ofⁿ ¬a) _ = mk↔ₛ′ (λ ()) (invert (ofⁿ ¬a)) (⊥-elim ∘ ¬a) λ () +True-↔ (true because [a]) irr = let a = invert [a] in mk↔ₛ′ (λ _ → a) _ (irr a) cong′ +True-↔ (false because [¬a]) _ = let ¬a = invert [¬a] in mk↔ₛ′ (λ ()) ¬a (λ a → contradiction a ¬a) λ () ------------------------------------------------------------------------ -- Result of decidability @@ -64,23 +63,20 @@ isYes≗does (false because _) = refl dec-true : (a? : Dec A) → A → does a? ≡ true dec-true (true because _ ) a = refl -dec-true (false because [¬a]) a = ⊥-elim (invert [¬a] a) +dec-true (false because [¬a]) a = contradiction a (invert [¬a]) dec-false : (a? : Dec A) → ¬ A → does a? ≡ false dec-false (false because _ ) ¬a = refl -dec-false (true because [a]) ¬a = ⊥-elim (¬a (invert [a])) +dec-false (true because [a]) ¬a = contradiction (invert [a]) ¬a dec-yes : (a? : Dec A) → A → ∃ λ a → a? ≡ yes a -dec-yes a? a with dec-true a? a -dec-yes (yes a′) a | refl = a′ , refl +dec-yes a? a with yes a′ ← a? | refl ← dec-true a? a = a′ , refl dec-no : (a? : Dec A) (¬a : ¬ A) → a? ≡ no ¬a -dec-no a? ¬a with dec-false a? ¬a -dec-no (no _) _ | refl = refl +dec-no a? ¬a with no _ ← a? | refl ← dec-false a? ¬a = refl dec-yes-irr : (a? : Dec A) → Irrelevant A → (a : A) → a? ≡ yes a -dec-yes-irr a? irr a with dec-yes a? a -... | a′ , eq rewrite irr a a′ = eq +dec-yes-irr a? irr a with a′ , eq ← dec-yes a? a rewrite irr a a′ = eq ⌊⌋-map′ : ∀ t f (a? : Dec A) → ⌊ map′ {B = B} t f a? ⌋ ≡ ⌊ a? ⌋ ⌊⌋-map′ t f a? = trans (isYes≗does (map′ t f a?)) (sym (isYes≗does a?)) diff --git a/src/Relation/Nullary/Decidable/Core.agda b/src/Relation/Nullary/Decidable/Core.agda index 83da26e51b..9af6cc0078 100644 --- a/src/Relation/Nullary/Decidable/Core.agda +++ b/src/Relation/Nullary/Decidable/Core.agda @@ -11,17 +11,19 @@ module Relation.Nullary.Decidable.Core where +open import Agda.Builtin.Equality using (_≡_) open import Level using (Level; Lift) open import Data.Bool.Base using (Bool; T; false; true; not; _∧_; _∨_) open import Data.Unit.Polymorphic.Base using (⊤) -open import Data.Empty.Irrelevant using (⊥-elim) open import Data.Product.Base using (_×_) open import Data.Sum.Base using (_⊎_) open import Function.Base using (_∘_; const; _$_; flip) -open import Relation.Nullary.Reflects +open import Relation.Nullary.Recomputable as Recomputable hiding (recompute-constant) +open import Relation.Nullary.Reflects as Reflects hiding (recompute; recompute-constant) open import Relation.Nullary.Negation.Core using (¬_; Stable; negated-stable; contradiction; DoubleNegation) + private variable a b : Level @@ -69,9 +71,12 @@ module _ {A : Set a} where -- Given an irrelevant proof of a decidable type, a proof can -- be recomputed and subsequently used in relevant contexts. -recompute : Dec A → .A → A -recompute (yes a) _ = a -recompute (no ¬a) a = ⊥-elim (¬a a) + +recompute : Dec A → Recomputable A +recompute = Reflects.recompute ∘ proof + +recompute-constant : (a? : Dec A) (p q : A) → recompute a? p ≡ recompute a? q +recompute-constant = Recomputable.recompute-constant ∘ recompute ------------------------------------------------------------------------ -- Interaction with negation, sum, product etc. @@ -161,8 +166,8 @@ from-no (true because _ ) = _ map′ : (A → B) → (B → A) → Dec A → Dec B does (map′ A→B B→A a?) = does a? -proof (map′ A→B B→A (true because [a])) = ofʸ (A→B (invert [a])) -proof (map′ A→B B→A (false because [¬a])) = ofⁿ (invert [¬a] ∘ B→A) +proof (map′ A→B B→A (true because [a])) = of (A→B (invert [a])) +proof (map′ A→B B→A (false because [¬a])) = of (invert [¬a] ∘ B→A) ------------------------------------------------------------------------ -- Relationship with double-negation @@ -170,8 +175,8 @@ proof (map′ A→B B→A (false because [¬a])) = ofⁿ (invert [¬a] ∘ B→A -- Decidable predicates are stable. decidable-stable : Dec A → Stable A -decidable-stable (yes a) ¬¬a = a -decidable-stable (no ¬a) ¬¬a = contradiction ¬a ¬¬a +decidable-stable (true because [a]) ¬¬a = invert [a] +decidable-stable (false because [¬a]) ¬¬a = contradiction (invert [¬a]) ¬¬a ¬-drop-Dec : Dec (¬ ¬ A) → Dec (¬ A) ¬-drop-Dec ¬¬a? = map′ negated-stable contradiction (¬? ¬¬a?) diff --git a/src/Relation/Nullary/Negation.agda b/src/Relation/Nullary/Negation.agda index b9116504ec..5372ac5f5e 100644 --- a/src/Relation/Nullary/Negation.agda +++ b/src/Relation/Nullary/Negation.agda @@ -8,11 +8,10 @@ module Relation.Nullary.Negation where -open import Effect.Monad using (RawMonad; mkRawMonad) -open import Data.Bool.Base using (Bool; false; true; if_then_else_; not) -open import Data.Empty using (⊥-elim) +open import Data.Bool.Base using (Bool; false; true; if_then_else_) open import Data.Product.Base as Product using (_,_; Σ; Σ-syntax; ∃; curry; uncurry) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]) +open import Effect.Monad using (RawMonad; mkRawMonad) open import Function.Base using (flip; _∘_; const; _∘′_) open import Level using (Level) open import Relation.Nullary.Decidable.Core using (Dec; yes; no; ¬¬-excluded-middle) @@ -73,7 +72,7 @@ open import Relation.Nullary.Negation.Core public -- ⊥). call/cc : ((A → Whatever) → DoubleNegation A) → DoubleNegation A -call/cc hyp ¬a = hyp (λ a → ⊥-elim (¬a a)) ¬a +call/cc hyp ¬a = hyp (flip contradiction ¬a) ¬a -- The "independence of premise" rule, in the double-negation monad. -- It is assumed that the index set (A) is inhabited. @@ -83,7 +82,7 @@ independence-of-premise {A = A} {B = B} {P = P} q f = ¬¬-map helper ¬¬-exclu where helper : Dec B → Σ[ x ∈ A ] (B → P x) helper (yes p) = Product.map₂ const (f p) - helper (no ¬p) = (q , ⊥-elim ∘′ ¬p) + helper (no ¬p) = (q , flip contradiction ¬p) -- The independence of premise rule for binary sums. @@ -92,7 +91,7 @@ independence-of-premise-⊎ {A = A} {B = B} {C = C} f = ¬¬-map helper ¬¬-exc where helper : Dec A → (A → B) ⊎ (A → C) helper (yes p) = Sum.map const const (f p) - helper (no ¬p) = inj₁ (⊥-elim ∘′ ¬p) + helper (no ¬p) = inj₁ (flip contradiction ¬p) private diff --git a/src/Relation/Nullary/Negation/Core.agda b/src/Relation/Nullary/Negation/Core.agda index cbe9ac6da9..702fb16353 100644 --- a/src/Relation/Nullary/Negation/Core.agda +++ b/src/Relation/Nullary/Negation/Core.agda @@ -8,10 +8,9 @@ module Relation.Nullary.Negation.Core where -open import Data.Bool.Base using (not) -open import Data.Empty using (⊥; ⊥-elim) +open import Data.Empty using (⊥; ⊥-elim-irr) open import Data.Sum.Base using (_⊎_; [_,_]; inj₁; inj₂) -open import Function.Base using (flip; _$_; _∘_; const) +open import Function.Base using (flip; _∘_; const) open import Level private @@ -48,8 +47,11 @@ _¬-⊎_ = [_,_] ------------------------------------------------------------------------ -- Uses of negation +contradiction-irr : .A → ¬ A → Whatever +contradiction-irr a ¬a = ⊥-elim-irr (¬a a) + contradiction : A → ¬ A → Whatever -contradiction a ¬a = ⊥-elim (¬a a) +contradiction a = contradiction-irr a contradiction₂ : A ⊎ B → ¬ A → ¬ B → Whatever contradiction₂ (inj₁ a) ¬a ¬b = contradiction a ¬a @@ -60,11 +62,11 @@ contraposition f ¬b a = contradiction (f a) ¬b -- Everything is stable in the double-negation monad. stable : ¬ ¬ Stable A -stable ¬[¬¬a→a] = ¬[¬¬a→a] (λ ¬¬a → ⊥-elim (¬¬a (¬[¬¬a→a] ∘ const))) +stable ¬[¬¬a→a] = ¬[¬¬a→a] (contradiction (¬[¬¬a→a] ∘ const)) -- Negated predicates are stable. negated-stable : Stable (¬ A) -negated-stable ¬¬¬a a = ¬¬¬a (_$ a) +negated-stable ¬¬¬a a = ¬¬¬a (contradiction a) ¬¬-map : (A → B) → ¬ ¬ A → ¬ ¬ B ¬¬-map f = contraposition (contraposition f) @@ -73,3 +75,4 @@ negated-stable ¬¬¬a a = ¬¬¬a (_$ a) private note : (A → ¬ B) → B → ¬ A note = flip + diff --git a/src/Relation/Nullary/Recomputable.agda b/src/Relation/Nullary/Recomputable.agda new file mode 100644 index 0000000000..cd0b83f113 --- /dev/null +++ b/src/Relation/Nullary/Recomputable.agda @@ -0,0 +1,63 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Recomputable types and their algebra as Harrop formulas +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Nullary.Recomputable where + +open import Agda.Builtin.Equality using (_≡_; refl) +open import Data.Empty using (⊥) +open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) +open import Level using (Level) +open import Relation.Nullary.Negation.Core using (¬_) + +private + variable + a b : Level + A : Set a + B : Set b + +------------------------------------------------------------------------ +-- Definition +-- +-- The idea of being 'recomputable' is that, given an *irrelevant* proof +-- of a proposition `A` (signalled by being a value of type `.A`, all of +-- whose inhabitants are identified up to definitional equality, and hence +-- do *not* admit pattern-matching), one may 'promote' such a value to a +-- 'genuine' value of `A`, available for subsequent eg. pattern-matching. + +Recomputable : (A : Set a) → Set a +Recomputable A = .A → A + +------------------------------------------------------------------------ +-- Fundamental property: 'promotion' is a constant function + +recompute-constant : (r : Recomputable A) (p q : A) → r p ≡ r q +recompute-constant r p q = refl + +------------------------------------------------------------------------ +-- Constructions + +⊥-recompute : Recomputable ⊥ +⊥-recompute () + +_×-recompute_ : Recomputable A → Recomputable B → Recomputable (A × B) +(rA ×-recompute rB) p = rA (p .proj₁) , rB (p .proj₂) + +_→-recompute_ : (A : Set a) → Recomputable B → Recomputable (A → B) +(A →-recompute rB) f a = rB (f a) + +Π-recompute : (B : A → Set b) → (∀ x → Recomputable (B x)) → Recomputable (∀ x → B x) +Π-recompute B rB f a = rB a (f a) + +∀-recompute : (B : A → Set b) → (∀ {x} → Recomputable (B x)) → Recomputable (∀ {x} → B x) +∀-recompute B rB f = rB f + +-- corollary: negated propositions are Recomputable + +¬-recompute : Recomputable (¬ A) +¬-recompute {A = A} = A →-recompute ⊥-recompute + diff --git a/src/Relation/Nullary/Reflects.agda b/src/Relation/Nullary/Reflects.agda index 3b301fdbce..00cee309a7 100644 --- a/src/Relation/Nullary/Reflects.agda +++ b/src/Relation/Nullary/Reflects.agda @@ -11,14 +11,13 @@ module Relation.Nullary.Reflects where open import Agda.Builtin.Equality open import Data.Bool.Base -open import Data.Unit.Base using (⊤) -open import Data.Empty open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) open import Level using (Level) open import Function.Base using (_$_; _∘_; const; id) - open import Relation.Nullary.Negation.Core + using (¬_; contradiction-irr; contradiction; _¬-⊎_) +open import Relation.Nullary.Recomputable as Recomputable using (Recomputable) private variable @@ -52,6 +51,20 @@ invert : ∀ {b} → Reflects A b → if b then A else ¬ A invert (ofʸ a) = a invert (ofⁿ ¬a) = ¬a +------------------------------------------------------------------------ +-- recompute + +-- Given an irrelevant proof of a reflected type, a proof can +-- be recomputed and subsequently used in relevant contexts. + +recompute : ∀ {b} → Reflects A b → Recomputable A +recompute (ofʸ a) _ = a +recompute (ofⁿ ¬a) a = contradiction-irr a ¬a + +recompute-constant : ∀ {b} (r : Reflects A b) (p q : A) → + recompute r p ≡ recompute r q +recompute-constant = Recomputable.recompute-constant ∘ recompute + ------------------------------------------------------------------------ -- Interaction with negation, product, sums etc. @@ -64,34 +77,34 @@ T-reflects false = of id -- If we can decide A, then we can decide its negation. ¬-reflects : ∀ {b} → Reflects A b → Reflects (¬ A) (not b) -¬-reflects (ofʸ a) = ofⁿ (_$ a) -¬-reflects (ofⁿ ¬a) = ofʸ ¬a +¬-reflects (ofʸ a) = of (_$ a) +¬-reflects (ofⁿ ¬a) = of ¬a -- If we can decide A and Q then we can decide their product _×-reflects_ : ∀ {a b} → Reflects A a → Reflects B b → Reflects (A × B) (a ∧ b) -ofʸ a ×-reflects ofʸ b = ofʸ (a , b) -ofʸ a ×-reflects ofⁿ ¬b = ofⁿ (¬b ∘ proj₂) -ofⁿ ¬a ×-reflects _ = ofⁿ (¬a ∘ proj₁) +ofʸ a ×-reflects ofʸ b = of (a , b) +ofʸ a ×-reflects ofⁿ ¬b = of (¬b ∘ proj₂) +ofⁿ ¬a ×-reflects _ = of (¬a ∘ proj₁) _⊎-reflects_ : ∀ {a b} → Reflects A a → Reflects B b → Reflects (A ⊎ B) (a ∨ b) -ofʸ a ⊎-reflects _ = ofʸ (inj₁ a) -ofⁿ ¬a ⊎-reflects ofʸ b = ofʸ (inj₂ b) -ofⁿ ¬a ⊎-reflects ofⁿ ¬b = ofⁿ (¬a ¬-⊎ ¬b) +ofʸ a ⊎-reflects _ = of (inj₁ a) +ofⁿ ¬a ⊎-reflects ofʸ b = of (inj₂ b) +ofⁿ ¬a ⊎-reflects ofⁿ ¬b = of (¬a ¬-⊎ ¬b) _→-reflects_ : ∀ {a b} → Reflects A a → Reflects B b → Reflects (A → B) (not a ∨ b) -ofʸ a →-reflects ofʸ b = ofʸ (const b) -ofʸ a →-reflects ofⁿ ¬b = ofⁿ (¬b ∘ (_$ a)) -ofⁿ ¬a →-reflects _ = ofʸ (⊥-elim ∘ ¬a) +ofʸ a →-reflects ofʸ b = of (const b) +ofʸ a →-reflects ofⁿ ¬b = of (¬b ∘ (_$ a)) +ofⁿ ¬a →-reflects _ = of (λ a → contradiction a ¬a) ------------------------------------------------------------------------ -- Other lemmas fromEquivalence : ∀ {b} → (T b → A) → (A → T b) → Reflects A b -fromEquivalence {b = true} sound complete = ofʸ (sound _) -fromEquivalence {b = false} sound complete = ofⁿ complete +fromEquivalence {b = true} sound complete = of (sound _) +fromEquivalence {b = false} sound complete = of complete -- `Reflects` is deterministic. det : ∀ {b b′} → Reflects A b → Reflects A b′ → b ≡ b′ diff --git a/src/Relation/Unary.agda b/src/Relation/Unary.agda index 0f8a7534fd..3abc070ace 100644 --- a/src/Relation/Unary.agda +++ b/src/Relation/Unary.agda @@ -14,9 +14,8 @@ open import Data.Product.Base using (_×_; _,_; Σ-syntax; ∃; uncurry; swap) open import Data.Sum.Base using (_⊎_; [_,_]) open import Function.Base using (_∘_; _|>_) open import Level using (Level; _⊔_; 0ℓ; suc; Lift) -open import Relation.Nullary.Decidable.Core using (Dec; True) -open import Relation.Nullary as Nullary using (¬_) open import Relation.Binary.PropositionalEquality.Core using (_≡_) +open import Relation.Nullary as Nullary using (¬_; Dec; True) private variable