forked from mlu355/MetadataNorm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetadatanorm.py
48 lines (45 loc) · 2.04 KB
/
metadatanorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
import torch.nn.functional as F
class MetadataNorm(nn.Module):
def __init__(self, batch_size, cf_kernel, dataset_size, num_features, momentum=0.1):
""" Metadata Normalization (MDN) module. MDN can be applied to layers in a neural network as a
normalization technique to remove metadata effects from the features in a network at the batch level.
self.cfs must be set for every new batch based on the confounders for the batch.
.
Args:
batch_size (int): batch size
cf_kernel (2d vector): precalculated kernel for MDN based on the vector X of confounders (X^TX)^-1
dataset_size (int): size of dataset
num_features (int): number of features used to initialize beta
momentum (float): momentum for stored beta
"""
super(MetadataNorm, self).__init__()
self.cf_kernel = cf_kernel
self.batch_size = batch_size
self.kernel_dim = cf_kernel.shape[0]
self.cfs = nn.Parameter(torch.randn(batch_size, self.kernel_dim), requires_grad=False)
self.dataset_size = dataset_size
self.num_features = num_features
self.register_buffer('beta', torch.zeros(self.kernel_dim, self.num_features))
self.momentum = momentum # If momentum is None, standard average is used
if momentum == None:
self.momentum = 0.5
def forward(self, x):
Y = x
N = x.shape[0]
Y = Y.reshape(N, -1)
X_batch = self.cfs # confounders for this batch only
scale = self.dataset_size / self.batch_size
if self.training:
XT = torch.transpose(X_batch, 0, 1)
pinv = torch.mm(self.cf_kernel, XT)
B = torch.mm(pinv, Y)
with torch.no_grad():
self.beta = (1 - self.momentum) * self.beta + self.momentum * B
else:
B = self.beta
Y_r = torch.mm(X_batch[:, 1:], B[1:])
residual = Y - scale * Y_r
residual = residual.reshape(x.shape)
return residual