forked from atzhou8/ciwganfiwgan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
37 lines (27 loc) · 1.04 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# -*- coding: utf-8 -*-
"""
Author: Andrej Leban
Created on Sun May 29 13:05:27 2022
"""
import time
import sounddevice as sd
# import soundfile as sf
import torch
from infowavegan import WaveGANGenerator, WaveGANQNetwork
sample_rate = 32000
if __name__ == "__main__":
# Load generator from checkpoint
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
G = WaveGANGenerator(slice_len=65536)
G.load_state_dict(torch.load("../NNs/ciw/epoch14350_step487900_G.pt", map_location=device))
G.to(device)
Q = WaveGANQNetwork(num_categ=5, slice_len=65536)
Q.load_state_dict(torch.load("../NNs/ciw/epoch14350_step487900_Q.pt", map_location=device))
Q.to(device)
# Generate from random noise
for i in range(100):
z = torch.FloatTensor(1, 100).uniform_(-1, 1).to(device)
genData = G(z)[0, 0, :].detach().cpu().numpy()
# write(f'out.wav', sample_rate, (genData * 32767).astype(np.int16))
sd.play(genData, sample_rate)
time.sleep(1)