Skip to content

Latest commit

 

History

History
978 lines (784 loc) · 29.4 KB

README.md

File metadata and controls

978 lines (784 loc) · 29.4 KB

My Timesaver utilities

A set of simple utilities I found useful to import

This is the current list of functions

  • Profiling Utilities
    • @profile_call(fname=None) - a function or method decorator to record execution times
    • print_prof_data(fname=None) - prints out profile data for function fname or all functions if fname is None
    • clear_prof_data(fname=None) - clears out profile data for function fname or all functions if fname is None
    • get_prof_data(fname) - get exec times for fname
    • start_record(fname) - start recording time for fname (alternative to decorator if function cannot decorated)
    • end_record(fname) - stop recording and add elapsed time for fname
    • save_prof_data(file_name) - save profile data to file_name
    • load_prof_data(file_name) - load profile data from file_name
  • Profiling Callback
    • MyProfileCallback - a fastai Callback that provides a hierarchical view of model training time execution
      • Learner.to_my_profile - method added to a fastai Learner if my_timesaver_utils.profiling_callback is imported. Call it to add a MyProfileCallback to the Learner instance.
      • Learner.my_profile - MyProfileCallback instance attached to the fastai Learner object if to_my_profile method is called.
      • print_stats - MyProfileCallback method to show a hierarchical view of the training lifecycle execution stats (execution counts, avg time, max time)
      • get_stats - MyProfileCallback method to get the execution stats as a list
      • clear_stats - MyProfileCallback method to reset the execution stats
      • reset - MyProfileCallback attribute to set so each call to Learner.fit resets the execution counts before starting the training.
  • Enhanced Image Classifier Cleaner
    • class EnhancedImageClassifierCleaner - a drop-in replacement for the fastai.vision.widgets.ImageClassifierCleaner which adds Apply and Reset buttons to allow the user to apply or revert changes to actual dataset.(In the fastai, the application of the changes is done in a separate step, making it more cumbersome to apply across a lot of categories -- doubling it since it segregates the validation and training datasets as well)

Install

pip install git+https://github.com/butchland/my_timesaver_utils.git

How to use

Profiling Utils

Import the utils -- You can either import all the utilities

from my_timesaver_utils.all import *

Or you can import only the profiling package

from my_timesaver_utils.profiling import *

Decorate method or function you want to profile

#hide_output
import time

@profile_call
def test_func(t=2.0):
    time.sleep(1)
    

Call your method or function

for i in range(10):
    test_func(i)

You can also add an optional funcname if you want to replace the name its stored in the profile data

@profile_call('wachacha')
def test_func2():
    time.sleep(1.0)
for i in range(3):
    test_func2()
    

Print your profile data

print_prof_data('test_func')
Function test_func called 20 times.
Execution time max: 1.005, average: 1.003

Print your profile data for the test_func2 (aka wachacha)

print_prof_data('wachacha')
Function wachacha called 3 times.
Execution time max: 1.005, average: 1.004

Get your profile data (e.g. good for graphing)

times = get_prof_data('test_func'); times
[1.0015828609466553,
 1.0050618648529053,
 1.0031030178070068,
 1.005044937133789,
 1.0005640983581543,
 1.0037250518798828,
 1.005134105682373,
 1.0017268657684326,
 1.0040719509124756,
 1.000154972076416,
 1.0042312145233154,
 1.0004308223724365,
 1.0003941059112549,
 1.004988193511963,
 1.0016610622406006,
 1.000688076019287,
 1.0050456523895264,
 1.0013980865478516,
 1.0050151348114014,
 1.005051851272583]

If you can't add a decorator, you can start and end the recording manually and it will be added to the profile data

for i in range(10):
    start_record('my_sleep')
    time.sleep(1.)
    end_record('my_sleep')

As an alternative, the decorator can be invoked this way

sleep = profile_call(time.sleep)
for i in range(5):
    sleep(i)

You can also pass in an optional function name to replace the func name used in the profile data

sleep2 = profile_call(time.sleep, 'maluman')
for i in range(3): sleep2(1)

If you call print_prof_data without any arguments, it will print all the timings for all the functions

print_prof_data()
Function test_func called 20 times.
Execution time max: 1.005, average: 1.003
Function wachacha called 3 times.
Execution time max: 1.005, average: 1.004
Function my_sleep called 10 times.
Execution time max: 1.005, average: 1.002
Function sleep called 5 times.
Execution time max: 4.005, average: 2.003
Function maluman called 3 times.
Execution time max: 1.003, average: 1.002

You can also get the profile data for the manually recorded calls as well.

times2 = get_prof_data('sleep');times2
[1.1920928955078125e-05,
 1.0048019886016846,
 2.0013680458068848,
 3.0050129890441895,
 4.004997253417969]

You can also save the profile data to a file

save_file = 'my_profile_data.pickle'
save_prof_data(save_file)

Calling clear_prof_data for a function will clear out the data for that function

clear_prof_data('sleep')
print_prof_data()
Function test_func called 20 times.
Execution time max: 1.005, average: 1.003
Function wachacha called 3 times.
Execution time max: 1.005, average: 1.004
Function my_sleep called 10 times.
Execution time max: 1.005, average: 1.002
Function maluman called 3 times.
Execution time max: 1.003, average: 1.002

Calling the clear_prof_data with no arguments will clear out all the previously recorded timings.

clear_prof_data()
print_prof_data()

You can reload the profile data from a previously saved file

load_prof_data(save_file)
print_prof_data()
Function test_func called 20 times.
Execution time max: 1.005, average: 1.003
Function wachacha called 3 times.
Execution time max: 1.005, average: 1.004
Function my_sleep called 10 times.
Execution time max: 1.005, average: 1.002
Function sleep called 5 times.
Execution time max: 4.005, average: 2.003
Function maluman called 3 times.
Execution time max: 1.003, average: 1.002

Profiling Callback

Import the utils -- You can either import all the utilities

from my_timesaver_utils.all import *

Or you can import only the profiling callback package

from my_timesaver_utils.profiling_callback import *

Example Usage

from fastai.vision.all import *

Import the whole my_timesaver_utils package

from my_timesaver_utils.all import *

or as an alternative, just import the profiling_callback package

from my_timesaver_utils.profiling_callback import *

Setup your path, data, datablock, dataloaders and learner as usual.

path = untar_data(URLs.MNIST_TINY)
Path.BASE_PATH = path
datablock = DataBlock(
    blocks=(ImageBlock,CategoryBlock),
    get_items=get_image_files,
    get_y=parent_label,
    splitter=GrandparentSplitter(),
    item_tfms=Resize(28),
    batch_tfms=[]
)
dls = datablock.dataloaders(path)
learner = cnn_learner(dls,resnet18,metrics=accuracy)

Importing the profiling callback adds a method to_my_profile to the learner object

learner.to_my_profile()
<fastai.learner.Learner at 0x139594d10>

Calling the to_my_profile method on the learner object adds a callback called MyProfileCallback which can be accessed through the learner attribute my_profile.

learner.summary()
Sequential (Input shape: ['64 x 3 x 28 x 28'])
================================================================
Layer (type)         Output Shape         Param #    Trainable 
================================================================
Conv2d               64 x 64 x 14 x 14    9,408      False     
________________________________________________________________
BatchNorm2d          64 x 64 x 14 x 14    128        True      
________________________________________________________________
ReLU                 64 x 64 x 14 x 14    0          False     
________________________________________________________________
MaxPool2d            64 x 64 x 7 x 7      0          False     
________________________________________________________________
Conv2d               64 x 64 x 7 x 7      36,864     False     
________________________________________________________________
BatchNorm2d          64 x 64 x 7 x 7      128        True      
________________________________________________________________
ReLU                 64 x 64 x 7 x 7      0          False     
________________________________________________________________
Conv2d               64 x 64 x 7 x 7      36,864     False     
________________________________________________________________
BatchNorm2d          64 x 64 x 7 x 7      128        True      
________________________________________________________________
Conv2d               64 x 64 x 7 x 7      36,864     False     
________________________________________________________________
BatchNorm2d          64 x 64 x 7 x 7      128        True      
________________________________________________________________
ReLU                 64 x 64 x 7 x 7      0          False     
________________________________________________________________
Conv2d               64 x 64 x 7 x 7      36,864     False     
________________________________________________________________
BatchNorm2d          64 x 64 x 7 x 7      128        True      
________________________________________________________________
Conv2d               64 x 128 x 4 x 4     73,728     False     
________________________________________________________________
BatchNorm2d          64 x 128 x 4 x 4     256        True      
________________________________________________________________
ReLU                 64 x 128 x 4 x 4     0          False     
________________________________________________________________
Conv2d               64 x 128 x 4 x 4     147,456    False     
________________________________________________________________
BatchNorm2d          64 x 128 x 4 x 4     256        True      
________________________________________________________________
Conv2d               64 x 128 x 4 x 4     8,192      False     
________________________________________________________________
BatchNorm2d          64 x 128 x 4 x 4     256        True      
________________________________________________________________
Conv2d               64 x 128 x 4 x 4     147,456    False     
________________________________________________________________
BatchNorm2d          64 x 128 x 4 x 4     256        True      
________________________________________________________________
ReLU                 64 x 128 x 4 x 4     0          False     
________________________________________________________________
Conv2d               64 x 128 x 4 x 4     147,456    False     
________________________________________________________________
BatchNorm2d          64 x 128 x 4 x 4     256        True      
________________________________________________________________
Conv2d               64 x 256 x 2 x 2     294,912    False     
________________________________________________________________
BatchNorm2d          64 x 256 x 2 x 2     512        True      
________________________________________________________________
ReLU                 64 x 256 x 2 x 2     0          False     
________________________________________________________________
Conv2d               64 x 256 x 2 x 2     589,824    False     
________________________________________________________________
BatchNorm2d          64 x 256 x 2 x 2     512        True      
________________________________________________________________
Conv2d               64 x 256 x 2 x 2     32,768     False     
________________________________________________________________
BatchNorm2d          64 x 256 x 2 x 2     512        True      
________________________________________________________________
Conv2d               64 x 256 x 2 x 2     589,824    False     
________________________________________________________________
BatchNorm2d          64 x 256 x 2 x 2     512        True      
________________________________________________________________
ReLU                 64 x 256 x 2 x 2     0          False     
________________________________________________________________
Conv2d               64 x 256 x 2 x 2     589,824    False     
________________________________________________________________
BatchNorm2d          64 x 256 x 2 x 2     512        True      
________________________________________________________________
Conv2d               64 x 512 x 1 x 1     1,179,648  False     
________________________________________________________________
BatchNorm2d          64 x 512 x 1 x 1     1,024      True      
________________________________________________________________
ReLU                 64 x 512 x 1 x 1     0          False     
________________________________________________________________
Conv2d               64 x 512 x 1 x 1     2,359,296  False     
________________________________________________________________
BatchNorm2d          64 x 512 x 1 x 1     1,024      True      
________________________________________________________________
Conv2d               64 x 512 x 1 x 1     131,072    False     
________________________________________________________________
BatchNorm2d          64 x 512 x 1 x 1     1,024      True      
________________________________________________________________
Conv2d               64 x 512 x 1 x 1     2,359,296  False     
________________________________________________________________
BatchNorm2d          64 x 512 x 1 x 1     1,024      True      
________________________________________________________________
ReLU                 64 x 512 x 1 x 1     0          False     
________________________________________________________________
Conv2d               64 x 512 x 1 x 1     2,359,296  False     
________________________________________________________________
BatchNorm2d          64 x 512 x 1 x 1     1,024      True      
________________________________________________________________
AdaptiveAvgPool2d    64 x 512 x 1 x 1     0          False     
________________________________________________________________
AdaptiveMaxPool2d    64 x 512 x 1 x 1     0          False     
________________________________________________________________
Flatten              64 x 1024            0          False     
________________________________________________________________
BatchNorm1d          64 x 1024            2,048      True      
________________________________________________________________
Dropout              64 x 1024            0          False     
________________________________________________________________
Linear               64 x 512             524,288    True      
________________________________________________________________
ReLU                 64 x 512             0          False     
________________________________________________________________
BatchNorm1d          64 x 512             1,024      True      
________________________________________________________________
Dropout              64 x 512             0          False     
________________________________________________________________
Linear               64 x 2               1,024      True      
________________________________________________________________

Total params: 11,704,896
Total trainable params: 537,984
Total non-trainable params: 11,166,912

Optimizer used: <function Adam at 0x1390a5200>
Loss function: FlattenedLoss of CrossEntropyLoss()

Model frozen up to parameter group number 2

Callbacks:
  - TrainEvalCallback
  - Recorder
  - ProgressCallback
  - MyProfileCallback
learner.my_profile
MyProfileCallback

Call the print_stats method on the my_profile attribute of the Learner object displays a hierarchical list of the training lifecycle events -- in this case with no data yet as the fit method has not been called.

learner.my_profile.print_stats()
fit has no data
   epoch has no data
      train has no data
         train_batch has no data
            train_pred has no data
            train_loss has no data
            train_backward has no data
            train_step has no data
            train_zero_grad has no data
      valid has no data
         valid_batch has no data
            valid_pred has no data
            valid_loss has no data
learner.fit(1)
epoch train_loss valid_loss accuracy time
0 0.655225 0.184525 0.941345 00:14

The print_stats method now prints the execution counts, max time and avg time (in secs) for each part of the training lifecycle.

learner.my_profile.print_stats()
fit  called 1 times. max: 14.542 avg: 14.542
   epoch  called 1 times. max: 14.539 avg: 14.539
      train  called 1 times. max: 12.276 avg: 12.276
         train_batch  called 11 times. max: 1.159 avg: 1.076
            train_pred  called 11 times. max: 0.269 avg: 0.236
            train_loss  called 11 times. max: 0.001 avg: 0.001
            train_backward  called 11 times. max: 0.872 avg: 0.828
            train_step  called 11 times. max: 0.012 avg: 0.008
            train_zero_grad  called 11 times. max: 0.005 avg: 0.003
      valid  called 1 times. max: 2.256 avg: 2.256
         valid_batch  called 11 times. max: 0.208 avg: 0.183
            valid_pred  called 11 times. max: 0.201 avg: 0.180
            valid_loss  called 11 times. max: 0.001 avg: 0.001

The stats can also be collected as a list of tuples where each tuple consists of the lifecycle event name, the level, and the elapsed times.

fit_stats = learner.my_profile.get_stats();fit_stats
[('fit', 0, [14.542369842529297]),
 ('epoch', 1, [14.539028882980347]),
 ('train', 2, [12.275759220123291]),
 ('train_batch',
  3,
  [1.1590299606323242,
   1.1047968864440918,
   1.05731201171875,
   1.0566790103912354,
   1.0275590419769287,
   1.0583367347717285,
   1.0706360340118408,
   1.0878362655639648,
   1.0695040225982666,
   1.0548479557037354,
   1.0869989395141602]),
 ('train_pred',
  4,
  [0.2687697410583496,
   0.2391033172607422,
   0.2244129180908203,
   0.2360670566558838,
   0.2223670482635498,
   0.23363089561462402,
   0.23241806030273438,
   0.2404940128326416,
   0.22686195373535156,
   0.22826123237609863,
   0.24588418006896973]),
 ('train_loss',
  4,
  [0.0010721683502197266,
   0.0006809234619140625,
   0.0006620883941650391,
   0.0007491111755371094,
   0.0006761550903320312,
   0.000698089599609375,
   0.0007200241088867188,
   0.0008070468902587891,
   0.0006639957427978516,
   0.0006880760192871094,
   0.0007140636444091797]),
 ('train_backward',
  4,
  [0.8724572658538818,
   0.8547101020812988,
   0.8222289085388184,
   0.8091421127319336,
   0.7942306995391846,
   0.8135287761688232,
   0.8273820877075195,
   0.8366448879241943,
   0.8316769599914551,
   0.8132097721099854,
   0.8283698558807373]),
 ('train_step',
  4,
  [0.011558294296264648,
   0.0077021121978759766,
   0.0075457096099853516,
   0.007853031158447266,
   0.007728099822998047,
   0.00794076919555664,
   0.007550954818725586,
   0.0073511600494384766,
   0.007617950439453125,
   0.009986162185668945,
   0.00926518440246582]),
 ('train_zero_grad',
  4,
  [0.005139350891113281,
   0.0025839805603027344,
   0.002447843551635742,
   0.0028531551361083984,
   0.002541065216064453,
   0.0025222301483154297,
   0.0025501251220703125,
   0.0025250911712646484,
   0.0026650428771972656,
   0.002687215805053711,
   0.002749919891357422]),
 ('valid', 2, [2.2555930614471436]),
 ('valid_batch',
  3,
  [0.20812106132507324,
   0.18181729316711426,
   0.187255859375,
   0.1778090000152588,
   0.18497300148010254,
   0.18157696723937988,
   0.18445587158203125,
   0.18021106719970703,
   0.1816089153289795,
   0.18120694160461426,
   0.16774797439575195]),
 ('valid_pred',
  4,
  [0.20078110694885254,
   0.1788790225982666,
   0.18420696258544922,
   0.17487597465515137,
   0.18212318420410156,
   0.17869901657104492,
   0.18164587020874023,
   0.17727923393249512,
   0.1787278652191162,
   0.1784052848815918,
   0.16483402252197266]),
 ('valid_loss',
  4,
  [0.001481771469116211,
   0.0005438327789306641,
   0.0005319118499755859,
   0.0005309581756591797,
   0.0005328655242919922,
   0.0005371570587158203,
   0.0005366802215576172,
   0.0005400180816650391,
   0.0005350112915039062,
   0.0005319118499755859,
   0.0005390644073486328])]

The print_stats can also print just the stats for one lifecycle event

learner.my_profile.print_stats('train_batch')
         train_batch  called 11 times. max: 1.159 avg: 1.076

The get_stats can also just collect the stats for one lifecycle event

train_batch_stats = learner.my_profile.get_stats('train_batch'); train_batch_stats
('train_batch',
 3,
 [1.1590299606323242,
  1.1047968864440918,
  1.05731201171875,
  1.0566790103912354,
  1.0275590419769287,
  1.0583367347717285,
  1.0706360340118408,
  1.0878362655639648,
  1.0695040225982666,
  1.0548479557037354,
  1.0869989395141602])

Call the clear_stats to clear the stats. You can also pass a lifecycle event to clear a single event

learner.my_profile.clear_stats()
learner.my_profile.print_stats()
fit has no data
   epoch has no data
      train has no data
         train_batch has no data
            train_pred has no data
            train_loss has no data
            train_backward has no data
            train_step has no data
            train_zero_grad has no data
      valid has no data
         valid_batch has no data
            valid_pred has no data
            valid_loss has no data
learner.my_profile.print_stats('train')
      train has no data
learner.fine_tune(1)
epoch train_loss valid_loss accuracy time
0 0.974439 0.237767 0.924177 00:15
epoch train_loss valid_loss accuracy time
0 0.354515 0.197183 0.928469 00:23
learner.my_profile.print_stats()
fit  called 2 times. max: 22.964 avg: 18.613
   epoch  called 2 times. max: 22.960 avg: 18.609
      train  called 2 times. max: 20.698 avg: 16.336
         train_batch  called 22 times. max: 2.011 avg: 1.460
            train_pred  called 22 times. max: 0.280 avg: 0.232
            train_loss  called 22 times. max: 0.001 avg: 0.001
            train_backward  called 22 times. max: 1.540 avg: 1.165
            train_step  called 22 times. max: 0.195 avg: 0.057
            train_zero_grad  called 22 times. max: 0.010 avg: 0.005
      valid  called 2 times. max: 2.277 avg: 2.267
         valid_batch  called 22 times. max: 0.217 avg: 0.184
            valid_pred  called 22 times. max: 0.209 avg: 0.181
            valid_loss  called 22 times. max: 0.002 avg: 0.001
My Profile Reset Attribute

Setting the reset attribute to true on the my_profile attribute will cause the stats to be reset each time the fit method of the Learner is called. So only the accumulated stats for the last call to fit (e.g fine_tune calls fit twice, but setting the reset attribute to true will show only the stats for the second fit call. The default value of reset is False.

learner.my_profile.reset = True
learner.fine_tune(1)
epoch train_loss valid_loss accuracy time
0 0.954453 0.249635 0.905579 00:14
epoch train_loss valid_loss accuracy time
0 0.354821 0.196215 0.932761 00:23
learner.my_profile.print_stats()
fit  called 1 times. max: 22.159 avg: 22.159
   epoch  called 1 times. max: 22.154 avg: 22.154
      train  called 1 times. max: 19.886 avg: 19.886
         train_batch  called 11 times. max: 1.939 avg: 1.784
            train_pred  called 11 times. max: 0.264 avg: 0.231
            train_loss  called 11 times. max: 0.001 avg: 0.001
            train_backward  called 11 times. max: 1.483 avg: 1.440
            train_step  called 11 times. max: 0.182 avg: 0.104
            train_zero_grad  called 11 times. max: 0.010 avg: 0.008
      valid  called 1 times. max: 2.263 avg: 2.263
         valid_batch  called 11 times. max: 0.205 avg: 0.184
            valid_pred  called 11 times. max: 0.198 avg: 0.180
            valid_loss  called 11 times. max: 0.002 avg: 0.001
learner.my_profile.reset
True

Enhanced Image Classifier Cleaner

Import the utils -- You can either import all the utilities

from my_timesaver_utils.all import *

Or you can import only the enhanced image classifier cleaner package

from my_timesaver_utils.enhanced_imageclassifiercleaner import *

Prerequisites

In order to use the EnhancedImageClassifierCleaner (just like the fastai ImageClassifierCleaner), we will need to have an existing fastai Learner object.

Usage

Just create an instance of EnhancedImageClassifierCleaner object.

cleaner = EnhancedImageClassifierCleaner(learner)
cleaner # on a separate line, this will display the widget

If you updated your dataset, you can refresh your dataloader by running

newdls = datablock.dataloaders(path)
learner.dls = newdls # assume learner was previously created or loaded
cleaner = EnhancedImageClassifierCleaner(learner)

This will then display the updated images from your dataset.

cleaner = EnhancedImageClassifierCleaner(learner)
cleaner

pic of enhanced-image-classifier-cleaner widget

Custom Valid/Train folder structures and labeled categories

The default folder structure for the Enhanced Image Classifier Cleaner assumes that you are using RandomSplitter or GrandparentSplitter as your splitter and parent_label as the get_y parameter in your datablock.

If you have a custom valid/train splitter and your image files are not segregated by categories within them, you will need to create a custom file mover in order to update your image labels (aka categories).

The default implementation of the file_mover is shown below:

export
import shutil
def parent_move_file(fn, newcat):
    new_path = fn.parent.parent/newcat
    if new_path.is_dir():
        shutil.move(str(fn), new_path)
        new_file = new_path/fn.name
        return new_file
    return fn

The default implementation will work with either a RandomSplitter or GrandparentSplitter and if parent_label is used to get the labels.

Otherwise, you will need to modify the file_mover argument with a custom one and pass it as follows

cleaner = EnhancedImageClassifierCleaner(learner, file_mover=custom_file_mover)