-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGeom.hs
337 lines (265 loc) · 10.8 KB
/
Geom.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
-- https://byorgey.wordpress.com/2020/06/24/competitive-programming-in-haskell-vectors-and-2d-geometry/
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ViewPatterns #-}
module Geom where
import Data.Function (on)
import Data.List (nub)
import Data.Maybe (mapMaybe)
import Data.Ord (compare)
import Data.Ratio
------------------------------------------------------------
-- 2D points and vectors
data V2 s = V2 {getX :: !s, getY :: !s} deriving (Eq, Ord, Show, Functor)
type V2D = V2 Double
type P2 s = V2 s
type P2D = P2 Double
instance Foldable V2 where
foldMap f (V2 x y) = f x <> f y
zero :: Num s => V2 s
zero = V2 0 0
-- | Adding and subtracting vectors.
(^+^), (^-^) :: Num s => V2 s -> V2 s -> V2 s
V2 x1 y1 ^+^ V2 x2 y2 = V2 (x1 + x2) (y1 + y2)
V2 x1 y1 ^-^ V2 x2 y2 = V2 (x1 - x2) (y1 - y2)
-- | Scalar multiple of a vector.
(*^) :: Num s => s -> V2 s -> V2 s
(*^) k = fmap (k *)
(^/) :: Fractional s => V2 s -> s -> V2 s
v ^/ k = (1 / k) *^ v
------------------------------------------------------------
-- Utilities
-- | These combinators allows us to write e.g. 'v2 int' or 'v2 double'
-- to get a 'Scanner (V2 s)'.
v2, p2 :: Applicative f => f s -> f (V2 s)
v2 s = V2 <$> s <*> s
p2 = v2
newtype ByX s = ByX {unByX :: V2 s} deriving (Eq, Show, Functor)
newtype ByY s = ByY {unByY :: V2 s} deriving (Eq, Show, Functor)
instance Ord s => Ord (ByX s) where
compare = compare `on` (getX . unByX)
instance Ord s => Ord (ByY s) where
compare = compare `on` (getY . unByY)
-- Manhattan distance
manhattan :: Num s => P2 s -> P2 s -> s
manhattan (V2 x1 y1) (V2 x2 y2) = abs (x1 - x2) + abs (y1 - y2)
------------------------------------------------------------
-- Angles
newtype Angle s = A s -- angle (radians)
deriving (Show, Eq, Ord, Num, Fractional, Floating)
fromDeg :: Floating s => s -> Angle s
fromDeg d = A (d * pi / 180)
fromRad :: s -> Angle s
fromRad = A
toDeg :: Floating s => Angle s -> s
toDeg (A r) = r * 180 / pi
toRad :: Angle s -> s
toRad (A r) = r
dir :: V2D -> Angle Double
dir (V2 x y) = A $ atan2 y x
-- | Construct a vector in polar coordinates.
fromPolar :: Floating s => s -> Angle s -> V2 s
fromPolar r θ = rot θ (V2 r 0)
-- | Rotate a vector counterclockwise by a given angle.
rot :: Floating s => Angle s -> V2 s -> V2 s
rot (A θ) (V2 x y) = V2 (cos θ * x - sin θ * y) (sin θ * x + cos θ * y)
perp :: Num s => V2 s -> V2 s
perp (V2 x y) = V2 (-y) x
------------------------------------------------------------
-- Dot product
-- | Dot product of two vectors. u·v = |u||v| cos θ (where θ is the
-- (unsigned) angle between u and v). So u·v is zero iff the vectors
-- are perpendicular.
dot :: Num s => V2 s -> V2 s -> s
dot (V2 x1 y1) (V2 x2 y2) = x1 * x2 + y1 * y2
-- | 'dotP p1 p2 p3' computes the dot product of the vectors from p1
-- to p2 and from p1 to p3.
dotP :: Num s => P2 s -> P2 s -> P2 s -> s
dotP p1 p2 p3 = dot (p2 ^-^ p1) (p3 ^-^ p1)
-- | Squared norm of a vector, /i.e./ square of its length, /i.e./ dot
-- product with itself.
normSq :: Num s => V2 s -> s
normSq v = dot v v
-- | Norm, /i.e./ length of a vector.
norm :: Floating s => V2 s -> s
norm = sqrt . normSq
normalize :: Floating s => V2 s -> V2 s
normalize v = v ^/ norm v
-- | 'angleP p1 p2 p3' computes the (unsigned) angle of p1-p2-p3
-- (/i.e./ the angle at p2 made by rays to p1 and p3). The result
-- will always be in the range $[0, \pi]$.
angleP :: Floating s => P2 s -> P2 s -> P2 s -> Angle s
angleP x y z = A $ acos (dot a b / (norm a * norm b))
where
a = x ^-^ y
b = z ^-^ y
-- | 'signedAngleP p1 p2 p3' computes the /signed/ angle p1-p2-p3
-- (/i.e./ the angle at p2 made by rays to p1 and p3), in the range
-- $[-\pi, \pi]$. Positive iff the ray from p2 to p3 is
-- counterclockwise of the ray from p2 to p1.
signedAngleP :: (Floating s, Ord s) => P2 s -> P2 s -> P2 s -> Angle s
signedAngleP x y z = case turnP x y z of
CCW -> -angleP x y z
_ -> angleP x y z
------------------------------------------------------------
-- Cross product
-- | 2D cross product of two vectors. Gives the signed area of their
-- parallelogram (positive iff the second is counterclockwise of the
-- first). [Geometric algebra tells us that this is really the
-- coefficient of the bivector resulting from the outer product of
-- the two vectors.]
--
-- Note this works even for integral scalar types.
cross :: Num s => V2 s -> V2 s -> s
cross (V2 ux uy) (V2 vx vy) = ux * vy - vx * uy
-- | A version of cross product specialized to three points describing
-- the endpoints of the vectors. The first argument is the shared
-- tail of the vectors, and the second and third arguments are the
-- endpoints of the vectors.
crossP :: Num s => P2 s -> P2 s -> P2 s -> s
crossP p1 p2 p3 = cross (p2 ^-^ p1) (p3 ^-^ p1)
-- | The signed area of a triangle with given vertices can be computed
-- as half the cross product of two of the edges.
--
-- Note that this requires 'Fractional' because of the division by
-- two. If you want to stick with integral scalars, you can just
-- use 'crossP' to get twice the signed area.
signedTriArea :: Fractional s => P2 s -> P2 s -> P2 s -> s
signedTriArea p1 p2 p3 = crossP p1 p2 p3 / 2
-- | The (nonnegative) area of the triangle with the given vertices.
triArea :: Fractional s => P2 s -> P2 s -> P2 s -> s
triArea p1 p2 p3 = abs (signedTriArea p1 p2 p3)
-- | The signed area of the polygon with the given vertices, via the
-- "shoelace formula". Positive iff the points are given in
-- counterclockwise order.
signedPolyArea :: Fractional s => [P2 s] -> s
signedPolyArea pts = sum $ zipWith (signedTriArea zero) pts (tail pts ++ [head pts])
-- | The (nonnegative) area of the polygon with the given vertices.
polyArea :: Fractional s => [P2 s] -> s
polyArea = abs . signedPolyArea
-- | Direction of a turn: counterclockwise (left), clockwise (right),
-- or parallel (/i.e./ 0 or 180 degree turn).
data Turn = CCW | Par | CW
-- | Cross product can also be used to compute the direction of a
-- turn. If you are travelling from p1 to p2, 'turnP p1 p2 p3' says
-- whether you have to make a left (ccw) or right (cw) turn to
-- continue on to p3 (or if it is parallel). Equivalently, if you
-- are standing at p1 looking towards p2, and imagine the line
-- through p1 and p2 dividing the plane in two, is p3 on the right
-- side, left side, or on the line?
turnP :: (Num s, Ord s) => P2 s -> P2 s -> P2 s -> Turn
turnP x y z
| s > 0 = CCW
| s == 0 = Par
| otherwise = CW
where
s = signum (crossP x y z)
------------------------------------------------------------
-- 2D Lines
data L2 s = L2 {getDirection :: !(V2 s), getOffset :: !s}
type L2D = L2 Double
lineFromEquation :: Num s => s -> s -> s -> L2 s
lineFromEquation a b c = L2 (V2 b (-a)) c
lineFromPoints :: Num s => P2 s -> P2 s -> L2 s
lineFromPoints p q = L2 v (v `cross` p)
where
v = q ^-^ p
slope :: (Integral n, Eq n) => L2 n -> Maybe (Ratio n)
slope (getDirection -> V2 x y) = case x of
0 -> Nothing
_ -> Just (y % x)
dslope :: (Fractional s, Eq s) => L2 s -> Maybe s
dslope (getDirection -> V2 x y) = case x of
0 -> Nothing
_ -> Just (y / x)
side :: Num s => L2 s -> P2 s -> s
side (L2 v c) p = cross v p - c
leftOf :: (Num s, Ord s) => L2 s -> P2 s -> Bool
leftOf l p = side l p > 0
rightOf :: (Num s, Ord s) => L2 s -> P2 s -> Bool
rightOf l p = side l p < 0
toProjection :: Fractional s => L2 s -> P2 s -> V2 s
toProjection l@(L2 v _) p = (-side l p / normSq v) *^ perp v
project :: Fractional s => L2 s -> P2 s -> P2 s
project l p = p ^+^ toProjection l p
reflectAcross :: Fractional s => L2 s -> P2 s -> P2 s
reflectAcross l p = p ^+^ (2 *^ toProjection l p)
lineIntersection :: (Fractional s, Eq s) => L2 s -> L2 s -> Maybe (P2 s)
lineIntersection (L2 v1 c1) (L2 v2 c2)
| cross v1 v2 == 0 = Nothing
| otherwise = Just $ ((c1 *^ v2) ^-^ (c2 *^ v1)) ^/ cross v1 v2
------------------------------------------------------------
-- Segments
data Seg s = Seg (P2 s) (P2 s) deriving (Eq, Show)
segLine :: Num s => Seg s -> L2 s
segLine (Seg p q) = lineFromPoints p q
-- Test whether two segments intersect.
-- http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
segsIntersect :: (Ord s, Num s) => Seg s -> Seg s -> Bool
segsIntersect (Seg p1 q1) (Seg p2 q2)
| o1 /= o2 && o3 /= o4 = True
| o1 == 0 && onSegment p1 p2 q1 = True
| o2 == 0 && onSegment p1 q2 q1 = True
| o3 == 0 && onSegment p2 p1 q2 = True
| o4 == 0 && onSegment p2 q1 q2 = True
| otherwise = False
where
o1 = signum $ crossP p1 q1 p2
o2 = signum $ crossP p1 q1 q2
o3 = signum $ crossP p2 q2 p1
o4 = signum $ crossP p2 q2 q1
-- Given three *collinear* points p, q, r, check whether q lies on pr.
onSegment (V2 px py) (V2 qx qy) (V2 rx ry) =
min px rx <= qx
&& qx <= max px rx
&& min py ry <= qy
&& qy <= max py ry
segsIntersection :: (Ord s, Fractional s) => Seg s -> Seg s -> Maybe (P2 s)
segsIntersection s1 s2
| segsIntersect s1 s2 = lineIntersection (segLine s1) (segLine s2)
| otherwise = Nothing
------------------------------------------------------------
-- Rectangles
data Rect s = Rect {lowerLeft :: P2 s, dims :: V2 s} deriving (Eq, Show)
rectFromCorners :: (Num s, Ord s) => P2 s -> P2 s -> Rect s
rectFromCorners (V2 x1 y1) (V2 x2 y2) =
Rect (V2 (min x1 x2) (min y1 y2)) (V2 (abs (x2 - x1)) (abs (y2 - y1)))
pointInRect :: (Ord s, Num s) => P2 s -> Rect s -> Bool
pointInRect (V2 px py) (Rect (V2 llx lly) (V2 dx dy)) =
and
[ px >= llx
, px <= llx + dx
, py >= lly
, py <= lly + dy
]
rectSegs :: Num s => Rect s -> [Seg s]
rectSegs (Rect ll d@(V2 dx dy)) = [Seg ll ul, Seg ul ur, Seg ur lr, Seg lr ll]
where
ul = ll ^+^ V2 0 dy
ur = ll ^+^ d
lr = ll ^+^ V2 dx 0
rectSegIntersection :: (Fractional s, Ord s) => Rect s -> Seg s -> Maybe (Seg s)
rectSegIntersection r s@(Seg t u)
| pointInRect t r && pointInRect u r = Just s
| otherwise = case nub (mapMaybe (segsIntersection s) (rectSegs r)) of
[] -> Nothing
[p, q] -> Just $ Seg p q
[p]
| pointInRect t r -> Just (Seg p t)
| pointInRect u r -> Just (Seg p u)
| otherwise -> Nothing
------------------------------------------------------------
-- Circles
data Circle s = Circle {center :: P2 s, radius :: s} deriving (Eq, Show)
pointInCircle :: (Ord s, Num s) => P2 s -> Circle s -> Bool
pointInCircle p (Circle c r) = normSq (p ^-^ c) <= r * r
rectCircleIntersection :: (Ord s, Num s) => Rect s -> Circle s -> Bool
rectCircleIntersection (Rect ll@(V2 llx lly) d@(V2 dx dy)) (Circle c r) =
or
[ pointInRect c (Rect (V2 (llx - r) lly) (V2 (dx + 2 * r) dy))
, pointInRect c (Rect (V2 llx (lly - r)) (V2 dx (dy + 2 * r)))
, pointInCircle c (Circle ll r)
, pointInCircle c (Circle (ll ^+^ V2 dx 0) r)
, pointInCircle c (Circle (ll ^+^ V2 0 dy) r)
, pointInCircle c (Circle (ll ^+^ d) r)
]