-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfba.py
129 lines (116 loc) · 5.49 KB
/
fba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import cobra
from cobra.flux_analysis import flux_variability_analysis
from optlang.interface import OPTIMAL
import pandas as pd
import numpy as np
from gapfilling import add_gapfilled_reactions
from optlang.symbolics import add
from copy import deepcopy
def flux_balance_analysis(model, paras):
# run flux balance analysis
# try different linear programming method the default algorithm fails
fba_solution = model.optimize()
if model.solver.status != OPTIMAL:
is_optimal = False
for lp_method in ["primal", "dual", "network", "barrier", "sifting", "concurrent"]:
model.solver.configuration.lp_method = lp_method
fba_solution = model.optimize()
if model.solver.status == OPTIMAL:
is_optimal = True
break
assert is_optimal
assert fba_solution.objective_value > 0.0
# run parsimonious flux balance analysis
# try different linear programming method the default algorithm fails
pfba_solution = cobra.flux_analysis.pfba(model)
# modify flux bounds to minimize input fluxes that do not contribute to growth
# For flux > 0, set its lower bound to 0
# For flux <= 0, set its lower bound to the flux value
for ex in model.exchanges:
assert ex.id.startswith('EX_')
if pfba_solution.fluxes[ex.id] >= 0.0:
ex.lower_bound = 0.0
else:
ex.lower_bound = pfba_solution.fluxes[ex.id]
# run flux variability analysis
fva = flux_variability_analysis(
model,
paras['TARGET_EX_RXNS'],
fraction_of_optimum=0.999999,
loopless=True
)
fva.index.name = 'reaction'
fva = fva.reset_index()
fva['biomass'] = fba_solution.objective_value
fva['normalized_maximum'] = fva['maximum'] / fva['biomass']
fva['phenotype'] = (fva['normalized_maximum'] >= float(paras['FLUX_CUTOFF'])).astype(int)
return fva
def predict_fermentation(gem_file, universe, paras):
print('predicting fermentation: %s...' % gem_file)
# read model and add missing reactions
model_no_gapfill, model_w_gapfill, num_rxns_added, rids_added = add_gapfilled_reactions(gem_file, universe, paras)
# run flux balance analysis for model with and without gap filling
fva_no_gapfill = flux_balance_analysis(model_no_gapfill, paras)
fva_no_gapfill.columns = [c + '__no_gapfill' if c != 'reaction' else 'reaction' for c in fva_no_gapfill.columns]
fva_w_gapfill = flux_balance_analysis(model_w_gapfill, paras)
fva_w_gapfill.columns = [c + '__w_gapfill' if c != 'reaction' else 'reaction' for c in fva_w_gapfill.columns]
fva = pd.merge(fva_no_gapfill, fva_w_gapfill, left_on='reaction', right_on='reaction', how='inner')
# expand fva
fva['gem_file'] = gem_file.rstrip('.xml')
fva['random_rxns'] = paras['ADD_RANDOM_RXNS']
fva['num_rxns_to_add'] = paras['NUM_GAPFILLED_RXNS_TO_ADD']
fva['num_rxns_added'] = num_rxns_added
fva['rxn_ids_added'] = ';'.join(rids_added)
# find reactions that lead to phenotypic changes from 0 to 1
key_rxns = []
for ex, phe1, phe2 in zip(fva['reaction'], fva['phenotype__no_gapfill'], fva['phenotype__w_gapfill']):
if phe1 == 0 and phe2 == 1:
model_w_gapfill2 = deepcopy(model_w_gapfill)
model_w_gapfill2.reactions.get_by_id(ex).lower_bound = 0.1 # some nontrivial small number
indicator_vars = []
for rid in rids_added:
var = model_w_gapfill2.problem.Variable('indicator_var_' + rid, lb=0, ub=1, type='binary')
indicator_vars.append(var)
con1 = model_w_gapfill2.problem.Constraint(
(model_w_gapfill2.reactions.get_by_id(rid).flux_expression + 1000.0 * var).expand(),
name='constr1' + rid,
lb=0
)
con2 = model_w_gapfill2.problem.Constraint(
(model_w_gapfill2.reactions.get_by_id(rid).flux_expression - 1000.0 * var).expand(),
name='constr2' + rid,
ub=0
)
model_w_gapfill2.add_cons_vars([var, con1, con2])
model_w_gapfill2.solver.update()
model_w_gapfill2.objective = add(*indicator_vars)
model_w_gapfill2.objective.direction = "min"
model_w_gapfill2.solver.update()
skip_this_prediction = False
for tol in [1e-9, 1e-8, 1e-7, 1e-6]:
model_w_gapfill2.solver.problem.parameters.mip.tolerances.integrality.set(tol)
try:
sol = model_w_gapfill2.optimize()
break
except:
if tol == 1e-6:
skip_this_prediction = True
if skip_this_prediction:
key_rxns.append(np.NaN)
else:
if sol.objective_value >= 1:
key_rxns2 = []
for var in model_w_gapfill2.variables:
rid = var.name.lstrip('indicator_var_')
if var.primal == 1:
print(ex, var.name)
if var.primal == 1 and rid in rids_added:
key_rxns2.append(rid)
key_rxns.append(';'.join(key_rxns2))
print('predict_fermentation: %s can be gapfilled by %s' % (ex, key_rxns[-1]))
else:
key_rxns.append(np.NaN)
else:
key_rxns.append(np.NaN)
fva['essential_rxns'] = key_rxns
return fva