This repository has been archived by the owner on Jun 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtransform_to_pb.py
139 lines (99 loc) · 3.72 KB
/
transform_to_pb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import tensorflow as tf
from fastai.vision import *
from tensorflow.python.framework import graph_io
from tensorflow.python.framework import graph_util
def convert_fastai_to_tf(pytorch_model, input):
has_reshaped = False
x = input
for _, m in enumerate(pytorch_model.modules()):
if isinstance(m, nn.Conv2d):
p = list(m.parameters())
x = create_conv2d(x, p[0].data.numpy(), p[1].data.numpy())
if isinstance(m, nn.BatchNorm2d):
p = list(m.parameters())
x = create_batch_norm(x,
mean=m.running_mean.numpy(),
variance=m.running_var.numpy(),
offset=p[1].data.numpy(),
scale=p[0].data.numpy(),
epsilon=m.eps)
if isinstance(m, nn.BatchNorm1d):
p = list(m.parameters())
x = create_batch_norm(x,
m.running_mean.numpy(),
m.running_var.numpy(),
offset=p[1].data.numpy(),
scale=p[0].data.numpy(),
epsilon=m.eps)
if isinstance(m, nn.ReLU):
x = create_relu(x)
if isinstance(m, nn.AvgPool2d):
x = create_avgpool2d(x)
if isinstance(m, nn.MaxPool2d):
x = create_maxpool2d(x)
if isinstance(m, nn.Linear):
if has_reshaped == False:
has_reshaped = True
x = tf.transpose(x, (0, 3, 1, 2))
x = tf.reshape(x, [-1, np.prod(x.shape.as_list())])
x = create_linear(x,
m.weight.data.numpy().transpose(),
m.bias.data.numpy())
else:
x = create_linear(x,
m.weight.data.numpy().transpose(),
m.bias.data.numpy())
return x
def export_to_pb(pytorch_model, filename):
tf.reset_default_graph()
input = tf.placeholder(tf.float32, shape=(1, 200, 200, 3))
x = convert_fastai_to_tf(pytorch_model, input)
with tf.Session() as sess:
pred_node_names = ["output"]
pred = [tf.identity(x, name=pred_node_names[0])]
graph = graph_util.convert_variables_to_constants(
sess,
sess.graph.as_graph_def(),
pred_node_names)
graph = graph_util.remove_training_nodes(graph)
path = graph_io.write_graph(graph, ".", filename, as_text=False)
print('saved the frozen graph (ready for inference) at: ', filename)
return path
def expand_dim(t):
if t is not None:
t = np.expand_dims(t, 0)
t = np.expand_dims(t, 1)
t = np.expand_dims(t, 2)
return t
def create_batch_norm(input,
mean,
variance,
offset=None,
scale=None,
epsilon=0):
if len(input.shape) == 4:
mean = expand_dim(mean)
variance = expand_dim(variance)
offset = expand_dim(offset)
scale = expand_dim(scale)
return tf.nn.batch_normalization(input,
mean,
variance,
offset,
scale,
epsilon)
def create_relu(input):
return tf.nn.relu(input)
def create_conv2d(input, filter, bias):
filter = np.transpose(filter, (2, 3, 1, 0))
x = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1],
padding="SAME")
return tf.nn.bias_add(x, bias)
def create_avgpool2d(input):
return tf.nn.avg_pool(input, [1, 2, 2, 1], [1, 2, 2, 1], "VALID")
def create_maxpool2d(input):
return tf.nn.max_pool(input, [1, 2, 2, 1], [1, 2, 2, 1], "VALID")
def create_linear(input, weights, bias):
x = tf.nn.bias_add(tf.matmul(input, weights), bias)
return x