forked from g4klx/MMDVM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIOTeensy.cpp
289 lines (246 loc) · 8.41 KB
/
IOTeensy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
* Copyright (C) 2016,2017,2018,2020 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "IO.h"
#if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#if defined(EXTERNAL_OSC)
#define PIN_LED 3
#else
#define PIN_LED 13
#endif
#define PIN_COS 4
#define PIN_PTT 5
#define PIN_COSLED 6
#define PIN_DSTAR 9
#define PIN_DMR 10
#define PIN_YSF 11
#define PIN_P25 12
#if defined(__MK20DX256__)
#define PIN_NXDN 2
#define PIN_POCSAG 3
#define PIN_FM 4
#else
#define PIN_NXDN 24
#define PIN_POCSAG 25
#define PIN_FM 26
#endif
#define PIN_ADC 5 // A0, Pin 14
#define PIN_RSSI 4 // Teensy 3.5/3.6, A16, Pin 35. Teensy 3.1/3.2, A17, Pin 28
#define PDB_CHnC1_TOS 0x0100
#define PDB_CHnC1_EN 0x0001
const uint16_t DC_OFFSET = 2048U;
extern "C" {
void adc0_isr()
{
io.interrupt();
}
}
void CIO::initInt()
{
// Set up the TX, COS and LED pins
pinMode(PIN_PTT, OUTPUT);
pinMode(PIN_COSLED, OUTPUT);
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_COS, INPUT);
#if defined(MODE_LEDS)
// Set up the mode output pins
pinMode(PIN_DSTAR, OUTPUT);
pinMode(PIN_DMR, OUTPUT);
pinMode(PIN_YSF, OUTPUT);
pinMode(PIN_P25, OUTPUT);
#if !defined(USE_ALTERNATE_NXDN_LEDS)
pinMode(PIN_NXDN, OUTPUT);
#endif
#if !defined(USE_ALTERNATE_M17_LEDS)
pinMode(PIN_M17, OUTPUT);
#endif
#if !defined(USE_ALTERNATE_POCSAG_LEDS)
pinMode(PIN_POCSAG, OUTPUT);
#endif
#if !defined(USE_ALTERNATE_FM_LEDS)
pinMode(PIN_FM, OUTPUT);
#endif
#endif
}
void CIO::startInt()
{
// Initialise the DAC
SIM_SCGC2 |= SIM_SCGC2_DAC0;
DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
// Initialise ADC0
SIM_SCGC6 |= SIM_SCGC6_ADC0;
ADC0_CFG1 = ADC_CFG1_ADIV(1) | ADC_CFG1_ADICLK(1) | // Single-ended 12 bits, long sample time
ADC_CFG1_MODE(1) | ADC_CFG1_ADLSMP;
ADC0_CFG2 = ADC_CFG2_MUXSEL | ADC_CFG2_ADLSTS(2); // Select channels ADxxxb
ADC0_SC2 = ADC_SC2_REFSEL(0) | ADC_SC2_ADTRG; // Voltage ref external, hardware trigger
ADC0_SC3 = ADC_SC3_AVGE | ADC_SC3_AVGS(0); // Enable averaging, 4 samples
ADC0_SC3 |= ADC_SC3_CAL;
while (ADC0_SC3 & ADC_SC3_CAL) // Wait for calibration
;
uint16_t sum0 = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + // Plus side gain
ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
sum0 = (sum0 / 2U) | 0x8000U;
ADC0_PG = sum0;
ADC0_SC1A = ADC_SC1_AIEN | PIN_ADC; // Enable ADC interrupt, use A0
NVIC_ENABLE_IRQ(IRQ_ADC0);
#if defined(SEND_RSSI_DATA)
// Initialise ADC1
SIM_SCGC3 |= SIM_SCGC3_ADC1;
ADC1_CFG1 = ADC_CFG1_ADIV(1) | ADC_CFG1_ADICLK(1) | // Single-ended 12 bits, long sample time
ADC_CFG1_MODE(1) | ADC_CFG1_ADLSMP;
ADC1_CFG2 = ADC_CFG2_MUXSEL | ADC_CFG2_ADLSTS(2); // Select channels ADxxxb
ADC1_SC2 = ADC_SC2_REFSEL(0); // Voltage ref external, software trigger
ADC1_SC3 = ADC_SC3_AVGE | ADC_SC3_AVGS(0); // Enable averaging, 4 samples
ADC1_SC3 |= ADC_SC3_CAL;
while (ADC1_SC3 & ADC_SC3_CAL) // Wait for calibration
;
uint16_t sum1 = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + // Plus side gain
ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
sum1 = (sum1 / 2U) | 0x8000U;
ADC1_PG = sum1;
#endif
#if defined(EXTERNAL_OSC)
// Set ADC0 to trigger from the LPTMR at 24 kHz
SIM_SOPT7 = SIM_SOPT7_ADC0ALTTRGEN | // Enable ADC0 alternate trigger
SIM_SOPT7_ADC0TRGSEL(14); // Trigger ADC0 by LPTMR0
CORE_PIN13_CONFIG = PORT_PCR_MUX(3);
SIM_SCGC5 |= SIM_SCGC5_LPTIMER; // Enable Low Power Timer Access
LPTMR0_CSR = 0; // Disable
LPTMR0_PSR = LPTMR_PSR_PBYP; // Bypass prescaler/filter
LPTMR0_CMR = (EXTERNAL_OSC / 24000) - 1; // Frequency divided by CMR + 1
LPTMR0_CSR = LPTMR_CSR_TPS(2) | // Pin: 0=CMP0, 1=xtal, 2=pin13
LPTMR_CSR_TMS; // Mode Select, 0=timer, 1=counter
LPTMR0_CSR |= LPTMR_CSR_TEN; // Enable
#else
// Setup PDB for ADC0 at 24 kHz
SIM_SCGC6 |= SIM_SCGC6_PDB; // Enable PDB clock
PDB0_MOD = (F_BUS / 24000) - 1; // Timer period - 1
PDB0_IDLY = 0; // Interrupt delay
PDB0_CH0C1 = PDB_CHnC1_TOS | PDB_CHnC1_EN; // Enable pre-trigger for ADC0
PDB0_SC = PDB_SC_TRGSEL(15) | PDB_SC_PDBEN | // SW trigger, enable interrupts, continuous mode
PDB_SC_PDBIE | PDB_SC_CONT | PDB_SC_LDOK; // No prescaling
PDB0_SC |= PDB_SC_SWTRIG; // Software trigger (reset and restart counter)
#endif
digitalWrite(PIN_PTT, m_pttInvert ? HIGH : LOW);
digitalWrite(PIN_COSLED, LOW);
digitalWrite(PIN_LED, HIGH);
}
void CIO::interrupt()
{
TSample sample = {DC_OFFSET, MARK_NONE};
m_txBuffer.get(sample);
*(int16_t *)&(DAC0_DAT0L) = sample.sample;
if ((ADC0_SC1A & ADC_SC1_COCO) == ADC_SC1_COCO) {
sample.sample = ADC0_RA;
m_rxBuffer.put(sample);
}
#if defined(SEND_RSSI_DATA)
if ((ADC1_SC1A & ADC_SC1_COCO) == ADC_SC1_COCO) {
uint16_t rssi = ADC1_RA;
m_rssiBuffer.put(rssi);
} else {
m_rssiBuffer.put(0U);
}
ADC1_SC1A = PIN_RSSI; // Start the next RSSI conversion
#else
m_rssiBuffer.put(0U);
#endif
m_watchdog++;
}
bool CIO::getCOSInt()
{
return digitalRead(PIN_COS) == HIGH;
}
void CIO::setLEDInt(bool on)
{
digitalWrite(PIN_LED, on ? HIGH : LOW);
}
void CIO::setPTTInt(bool on)
{
digitalWrite(PIN_PTT, on ? HIGH : LOW);
}
void CIO::setCOSInt(bool on)
{
digitalWrite(PIN_COSLED, on ? HIGH : LOW);
}
void CIO::setDStarInt(bool on)
{
digitalWrite(PIN_DSTAR, on ? HIGH : LOW);
}
void CIO::setDMRInt(bool on)
{
digitalWrite(PIN_DMR, on ? HIGH : LOW);
}
void CIO::setYSFInt(bool on)
{
digitalWrite(PIN_YSF, on ? HIGH : LOW);
}
void CIO::setP25Int(bool on)
{
digitalWrite(PIN_P25, on ? HIGH : LOW);
}
void CIO::setNXDNInt(bool on)
{
#if defined(USE_ALTERNATE_NXDN_LEDS)
digitalWrite(PIN_YSF, on ? HIGH : LOW);
digitalWrite(PIN_P25, on ? HIGH : LOW);
#else
digitalWrite(PIN_NXDN, on ? HIGH : LOW);
#endif
}
void CIO::setM17Int(bool on)
{
#if defined(USE_ALTERNATE_M17_LEDS)
digitalWrite(PIN_DSTAR, on ? HIGH : LOW);
digitalWrite(PIN_P25, on ? HIGH : LOW);
#else
digitalWrite(PIN_M17, on ? HIGH : LOW);
#endif
}
void CIO::setPOCSAGInt(bool on)
{
#if defined(USE_ALTERNATE_POCSAG_LEDS)
digitalWrite(PIN_DSTAR, on ? HIGH : LOW);
digitalWrite(PIN_DMR, on ? HIGH : LOW);
#else
digitalWrite(PIN_POCSAG, on ? HIGH : LOW);
#endif
}
void CIO::setFMInt(bool on)
{
#if defined(USE_ALTERNATE_FM_LEDS)
digitalWrite(PIN_DSTAR, on ? HIGH : LOW);
digitalWrite(PIN_YSF, on ? HIGH : LOW);
#else
digitalWrite(PIN_FM, on ? HIGH : LOW);
#endif
}
void CIO::delayInt(unsigned int dly)
{
delay(dly);
}
uint8_t CIO::getCPU() const
{
return 1U;
}
void CIO::getUDID(uint8_t* buffer)
{
::memcpy(buffer, (void *)0x4058, 16U);
}
#endif