-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlasalle.v
302 lines (261 loc) · 11.3 KB
/
lasalle.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
Require Import Reals.
Require Import Lra.
From Coquelicot Require Import Hierarchy Rcomplements Rbar Derive Continuity.
From mathcomp Require Import ssreflect ssrbool ssrnat ssrfun eqtype.
Require Import coquelicotComplements.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Classical_Pred_Type Classical_Prop.
Local Open Scope R_scope.
Local Open Scope classical_set_scope.
Lemma ball_prod (U V : UniformSpace) (p p' : U) (q q' : V) eps :
ball (p, q) eps (p', q') <-> (ball p eps p') /\ (ball q eps q').
Proof. by []. Qed.
Local Notation "{ 'all' A }" := (forall p, A p : Prop) (at level 0).
Section PositiveLimitingSet.
Variable U : UniformSpace.
Hint Resolve locally_ball.
Definition pos_limit_set (y : R -> U) :=
\bigcap_(eps : posreal) \bigcap_(T : posreal)
[set p | Rlt T `&` (y @^-1` ball p eps) !=set0].
Lemma plim_set_cluster (y : R -> U) :
pos_limit_set y = cluster (y @ +oo).
Proof.
apply/funext=> p; apply/propext.
split=> [plim_p A B [M yMinfty_A] [eps peps_B]|cluster_p eps _ T _].
wlog Mgt0 : M yMinfty_A / 0 < M.
move=> /(_ (Rmax M 1)) []; last (by move=> q ABq; exists q).
by move=> q /Rmax_Rlt [] /yMinfty_A.
exact: Rlt_le_trans Rlt_0_1 (Rmax_r _ _).
have [t [/yMinfty_A Ayt /peps_B Byt]] := plim_p eps I (mkposreal _ Mgt0) I.
by exists (y t).
have [] := cluster_p (y @` Rlt T) (ball p eps);
first by exists T; apply: imageP.
exact: locally_ball.
by move=> _ [[t tgtT <-] yt_eps_p]; exists t.
Qed.
Lemma nonempty_pos_limit_set y (A : set U) :
compact A -> (y @ +oo) A -> cluster (y @ +oo) !=set0.
Proof. by move=> cA /cA [p []]; exists p. Qed.
Lemma closed_pos_lim_set (y : R -> U) : is_closed (cluster (y @ +oo)).
Proof.
by rewrite clusterE; apply: is_closed_bigcap => ??; apply: is_closed_closure.
Qed.
Lemma cvg_to_pos_limit_set y (A : set U) :
(y @ +oo) A -> compact A -> y @ +oo --> cluster (y @ +oo).
Proof.
move=> yinftyA coA B [eps sclepsB].
by apply: filter_imp sclepsB _; apply: filter_cluster coA eps.
Qed.
(* Lemma cvg_to_pos_limit_set y (A : set U) : *)
(* (y @ +oo) A -> compact A -> y @ +oo --> cluster (y @ +oo). *)
(* Proof. *)
(* move=> yinftyA coA; apply: NNPP. *)
(* case/not_all_ex_not=> B /(@imply_to_and (locally_set _ _)) [[eps plim_eps_B]]. *)
(* move=> /not_ex_all_not nxinftyB. *)
(* suff : ~` B `&` B !=set0 by case=> ? []. *)
(* have proper_within_setC_B : ProperFilter (within (~` B) (y @ +oo)). *)
(* split=> [C [T snByCyT]|]; last exact: within_filter. *)
(* case /not_all_ex_not : (nyinftyB T) => t /(@imply_to_and (T < t)) [tgtT nByt]. *)
(* by exists (y t); exact: snByCyT. *)
(* case: (coA _ _ proper_within_setC_B); first by exact: filter_le_within. *)
(* move=> p [Ap plimnBp]; apply plimnBp; first by exists (mkposreal _ Rlt_0_1). *)
(* exists eps=> q hq; apply: plim_eps_B; exists p => // C D yinftyC pD. *)
(* by apply: plimnBp pD; apply: filter_le_within. *)
(* Qed. *)
Lemma sub_image_at_infty y (A : set U) : y @` Rle 0 `<=` A -> (y @ +oo) A.
Proof. by move=> syRpA; exists 0 => t tgt0; apply/syRpA/imageP/Rlt_le. Qed.
Lemma sub_plim_clos_invar y (A : set U) :
y @` Rle 0 `<=` A -> cluster (y @ +oo) `<=` closure A.
Proof. by move=> syRpA p ypp B /ypp; apply; apply: sub_image_at_infty. Qed.
Lemma c0_cvg_cst_on_pos_lim_set A y (V : U -> R) (l : R) :
continuous_on A V -> V \o y @ +oo --> l ->
is_closed A -> y @` Rle 0 `<=` A -> cluster (y @ +oo) `<=` V @^-1` [set l].
Proof.
move=> Vcont Vypl Acl syRpA p plimp.
have Aypinfty : (y @ +oo) A by apply: sub_image_at_infty.
have : (V @` cluster (y @ +oo)) (V p) by exists p.
move=> /(map_sub_cluster _ Vcont Aypinfty Acl).
by move=> /(filter_le_cluster Vypl) /Rhausdorff ->.
Qed.
End PositiveLimitingSet.
Lemma bounded_pos_limit_set (K : AbsRing) (U : NormedModule K) (y : R -> U) :
is_bounded (y @` Rle 0) -> is_bounded (cluster (y @ +oo)).
Proof.
move=> [M yRpleM]; exists (M + M) => p plimp.
have Mgt0 : 0 < M.
apply: Rle_lt_trans (norm_ge_0 (y 1)) _.
by apply: yRpleM; exists 1 => //; apply: Rle_0_1.
have [] := plimp (y @` Rle 0) (ball_norm p (mkposreal _ Mgt0)).
exact: sub_image_at_infty.
exact: locally_ball_norm.
move=> _ [[t tge0 <-] pMyt].
have -> : p = plus (y t) (opp (minus (y t) p)).
by rewrite -[LHS]plus_zero_r -(plus_opp_r (y t)) plus_comm -plus_assoc
opp_plus opp_opp.
apply: Rle_lt_trans (norm_triangle (y t) (opp (minus (y t) p))) _.
apply: Rplus_lt_compat; last by rewrite norm_opp.
by apply: yRpleM; exists t.
Qed.
Section DifferentialSystem.
Variable U : {normedModule R}.
Let hU : hausdorff U := @hausdorff_normed_module _ U.
(* function defining the differential system *)
Variable F : U -> U.
Definition is_sol (y : R -> U) :=
(forall t, t < 0 -> y t = minus (scal 2 (y 0)) (y (- t))) /\
forall t, 0 <= t -> deriv y t (F (y t)).
(* compact set used in LaSalle's invariance principle *)
Variable K : set U.
Hypothesis Kco : compact K.
(* solution function *)
Variable (sol : U -> R -> U).
Hypothesis (sol0 : forall p, sol p 0 = p).
Hypothesis solP : forall y, K (y 0) -> is_sol y <-> y = sol (y 0).
Hypothesis sol_cont : forall t, continuous_on K (sol^~ t).
Lemma sol_is_sol p : K p -> is_sol (sol p).
Proof. by move=> Kp; apply/solP; rewrite sol0. Qed.
Hint Resolve sol_is_sol.
Lemma uniq_sol x y :
K (x 0) -> K (y 0) -> is_sol x -> is_sol y -> x 0 = y 0 -> x = y.
Proof. by move=> Kx0 Ky0 /(solP Kx0)-> /(solP Ky0)->; rewrite !sol0 => ->. Qed.
Definition is_invariant A := forall p, A p -> forall t, 0 <= t -> A (sol p t).
Hypothesis Kinvar : is_invariant K.
(* Lemma sol_shift p t0 : *)
(* K p -> 0 <= t0 -> sol (sol p t0) = (fun t => sol p (t + t0)). *)
(* Proof. *)
(* move=> Kp t0ge0; apply: uniq_sol; *)
(* try apply: sol_is_sol; rewrite ?Rplus_0_l ?sol0 //; try exact: Kinvar. *)
(* by move=> t; apply/is_derive_shift/(sol_is_sol Kp). *)
(* Qed. *)
(* Lemma solD p t0 t : K p -> 0 <= t0 -> sol p (t + t0) = sol (sol p t0) t. *)
(* Proof. by move=> Kp t0ge0; rewrite sol_shift. Qed. *)
Definition shift_sol p t0 t :=
match (Rle_lt_dec 0 t) with
| left _ => sol p (t + t0)
| right _ => minus (scal 2 (sol p t0)) (sol p (- t + t0))
end.
Lemma sol_shift p t0 : K p -> 0 <= t0 -> is_sol (shift_sol p t0).
Proof.
move=> Kp t0ge0; split=> [t tlt0|t tge0].
rewrite /shift_sol Ropp_0 Rplus_0_l Ropp_involutive.
case: (Rle_lt_dec 0 0) => [_|/Rlt_irrefl //].
case: (Rle_lt_dec 0 t) => [/Rle_not_lt //|_].
case: (Rle_lt_dec 0 (- t)) => [//|/Rlt_le].
by have /Ropp_gt_lt_0_contravar /Rgt_not_le := tlt0.
split; first exact: is_linear_scal_l.
move=> _ /is_filter_lim_locally_unique <- eps.
have /sol_is_sol [_ solp] := Kp.
have /solp [_ /(_ (t + t0)) h] : 0 <= t + t0 by apply: Rplus_le_le_0_compat.
have /h /(_ eps) [e he] : is_filter_lim (locally (t + t0)) (t + t0) by [].
rewrite /shift_sol; case: (Rle_lt_dec 0 t) => [_|/Rlt_not_le //].
have minus_addr s : minus (s + t0) (t + t0) = minus s t.
by rewrite /minus /plus /opp /=; ring.
have /Rle_lt_or_eq_dec := tge0; case=> [tgt0|teq0].
have hpos : 0 < Rmin (Rabs t) e.
by apply: Rmin_pos; [apply/Rabs_pos_lt/Rgt_not_eq/Rlt_gt|apply: cond_pos].
exists (mkposreal _ hpos) => s hs.
have sge0 : 0 <= s.
move: hs; rewrite /ball /= /AbsRing_ball /= /minus /plus /opp /abs /=.
move=> /Rabs_lt_between [/Rlt_minus_r hs _].
apply: Rlt_le; apply: Rle_lt_trans hs.
rewrite Rplus_comm; apply/(Rminus_le_0 _ t).
by apply: Rle_trans (Rmin_l _ _) _; rewrite Rabs_pos_eq //; apply: Rle_refl.
have /he : ball (t + t0) e (s + t0).
rewrite /ball /= /AbsRing_ball /= minus_addr.
by apply: Rlt_le_trans hs _; apply: Rmin_r.
by case: (Rle_lt_dec 0 s)=> [_|/Rlt_not_le //]; rewrite minus_addr.
exists e => s hs; case: (Rle_lt_dec 0 s) => _.
have /he : ball (t + t0) e (s + t0).
by rewrite /ball /= /AbsRing_ball /= minus_addr; apply: hs.
by rewrite minus_addr.
have /he : ball (t + t0) e (- s + t0).
move: hs.
by rewrite /ball /= /AbsRing_ball /= minus_addr -teq0 !minus_zero_r abs_opp.
rewrite minus_addr -teq0 Rplus_0_l !minus_zero_r norm_opp.
have -> : minus (minus (scal 2 (sol p t0)) (sol p (- s + t0))) (sol p t0) =
minus (sol p t0) (sol p (- s + t0)).
rewrite [minus _ _]plus_comm plus_assoc -scal_opp_one -scal_distr_r.
have -> : plus (opp one) 2 = one by rewrite /plus /opp /one /=; ring.
by rewrite scal_one.
by rewrite scal_opp_l -[X in minus X _]opp_minus -[X in norm X]opp_plus
norm_opp.
Qed.
Lemma solD p t0 t :
K p -> 0 <= t0 -> 0 <= t -> sol p (t + t0) = sol (sol p t0) t.
Proof.
move=> Kp t0ge0 tge0.
have /sol_shift /(_ t0ge0) /solP := Kp.
rewrite /shift_sol; case: (Rle_lt_dec 0 0) => [_|/Rlt_irrefl //].
rewrite Rplus_0_l.
have Ksolpt0 : K (sol p t0) by apply: Kinvar.
by move=> /(_ Ksolpt0) <-; case: (Rle_lt_dec 0 t) => [_|/Rlt_not_le].
Qed.
Lemma invariant_pos_limit_set p : K p -> is_invariant (cluster (sol p @ +oo)).
Proof.
move=> Kp q plim_q t0 t0_ge0 A B [M].
wlog Mge0 : M / 0 <= M => [sufMge0|] solpMinfty_A.
apply: (sufMge0 (Rmax 0 M)); first exact: Rmax_l.
by move=> x /Rmax_Rlt [_]; apply: solpMinfty_A.
have Kq : K q.
apply: compact_closed => //.
by move=> C; apply: plim_q; exists 0 => t /Rlt_le tge0; apply: Kinvar.
move=> /(sol_cont Kq) /plim_q q_Bsolt0.
have /q_Bsolt0 [_ [[[t tgtM <-] _]]] : (sol p @ +oo) (sol p @` (Rlt M) `&` A).
by exists M => t tgtM; split; [apply: imageP|apply: solpMinfty_A].
have tge0 : 0 <= t by apply: Rlt_le; apply: Rle_lt_trans tgtM.
have Ksolpt : K (sol p t) by apply: Kinvar.
move=> /(_ Ksolpt); rewrite -solD // => Bsolpt0t; exists (sol p (t0 + t)).
by split=> //; apply: solpMinfty_A; lra.
Qed.
Definition limS (A : set U) := \bigcup_(q in A) cluster (sol q @ +oo).
Lemma invariant_limS A : A `<=` K -> is_invariant (limS A).
Proof.
move=> sAK p [q Aq plimp] t tge0.
by exists q => //; apply: invariant_pos_limit_set => //; apply: sAK.
Qed.
Lemma stable_limS (V : U -> R) :
continuous_on K V ->
(forall p t, K p -> 0 <= t -> ex_derive (V \o (sol p)) t) ->
(forall (p : U), K p -> Derive (V \o (sol p)) 0 <= 0) ->
limS K `<=` [set p | Derive (V \o (sol p)) 0 = 0].
Proof.
move=> Vcont Vsol_ex_deriv Vsol'le0 p [q Kq plimp].
have ssqRpK : sol q @` Rle 0 `<=` K.
by move=> _ [t tge0 <-]; apply: Kinvar.
suff : exists l, cluster (sol q @ +oo) `<=` V @^-1` [set l].
move=> [l Vpliml].
rewrite (@derive_ext_ge0 _ (fun=> l)); first exact: Derive_const.
exact: Rle_refl.
by move=> t tge0; apply/Vpliml/invariant_pos_limit_set.
suff [l Vsoltol] : [cvg V \o sol q @ +oo].
exists l; apply: (c0_cvg_cst_on_pos_lim_set Vcont)=> //.
exact: compact_closed hU Kco.
apply: nincr_lb_cvg.
move=> s t [sge0 slet].
apply: (@nincr_function_le _ (Finite 0) (Finite t))=> //; last first.
- exact: Rle_refl.
- move=> t' t'ge0 _.
suff <- : Derive (V \o (sol (sol q t'))) 0 = Derive (V \o (sol q)) t'.
exact/Vsol'le0/Kinvar.
rewrite -[t' in RHS]Rplus_0_r.
apply: derive_ext_ge0_shift; [apply: Rle_refl|apply: t'ge0|].
by move=> ??; rewrite /comp -solD // Rplus_comm.
- by move=> t' t'ge0 _; apply: Vsol_ex_deriv.
have: compact (V @` K) by apply: continuous_compact.
move=> /compact_bounded [N hN].
exists (- N)=> _ [t tge0 <-].
have /hN : (V @` K) ((V \o sol q) t) by apply/imageP/Kinvar.
by move=> /Rabs_def2 [].
Qed.
Lemma cvg_to_limS (A : set U) : compact A -> is_invariant A ->
forall p, A p -> sol p @ +oo --> limS A.
Proof.
move=> Aco Ainvar p Ap.
apply: (@cvg_to_superset _ (cluster (sol p @ +oo))).
by move=> q plimq; exists p.
apply: cvg_to_pos_limit_set Aco.
by exists 0=> t /Rlt_le tge0; exact: Ainvar.
Qed.
End DifferentialSystem.