-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
25 lines (20 loc) · 887 Bytes
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import glob
import os
import random
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image
class ImgPairDataset(Dataset):
def __init__(self, dataroot, transforms, modeStr):
self.dataroot = dataroot
self.transforms = transforms
self.datasetPathsA = sorted(glob.glob(os.path.join(dataroot, modeStr+'A') + '/*.*'))
self.datasetPathsB = sorted(glob.glob(os.path.join(dataroot, modeStr+'B') + '/*.*'))
self.lenA = len(self.datasetPathsA)
self.lenB = len(self.datasetPathsB)
def __len__(self):
return max(len(self.datasetPathsA), len(self.datasetPathsB))
def __getitem__(self, idx):
imgA = self.transforms(Image.open(self.datasetPathsA[idx % self.lenA]))
imgB = self.transforms(Image.open(self.datasetPathsB[idx % self.lenB]))
return {'A': imgA, 'B': imgB}