-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
62 lines (50 loc) · 1.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import random
from PIL import Image
import torch
from torch.autograd import Variable
from torchvision import transforms
import numpy as np
# opens and returns image file as a PIL image (0-255)
def load_image(filename):
img = Image.open(filename)
return img
# assumes data comes in batch form (ch, h, w) and is between [-1, 1]
def save_image(filename, data):
scale = np.array([0.5, 0.5, 0.5]).reshape((3, 1, 1))
add = np.array([1.0, 1.0, 1.0]).reshape((3, 1, 1))
img = data.clone().numpy()
img = (((img + add) * scale).transpose(1, 2, 0)*255.0).clip(0, 255).astype("uint8")
img = Image.fromarray(img)
img.save(filename)
def learning_rate_decay(initial_lr, curr_epoch, total_epochs, optim):
# keep the same learning rate for first 100 epochs
if curr_epoch < (total_epochs / 2):
return
# decay the learning rate linearly to 0 over the last 100 epochs
new_lr = initial_lr * ((total_epochs - curr_epoch - 1) / (total_epochs/2))
for g in optim.param_groups:
g['lr'] = new_lr
# replay buffer of size capacity that returns num_sample
# randomly sampled objects from the buffer
class ReplayBuffer(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.idx = 0
def push(self, val):
# increase buffer size till capacity
for sample in val.data:
sample = torch.unsqueeze(sample, 0)
if len(self.memory) < self.capacity:
self.memory.append(None)
# insert at idx and wrap around
self.memory[self.idx] = val
self.idx = (self.idx + 1) % self.capacity
def sample(self, num_samples):
retList = []
samples = random.sample(self.memory, num_samples)
for item in samples:
retList.append(item.clone())
return torch.cat(retList)
def __len__(self):
return len(self.memory)