-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasgn1.c
550 lines (457 loc) · 17.5 KB
/
asgn1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
/**
* File: asgn1.c
* Date: 13/03/2011
* Author: Edward Hills
* Version: 0.9
*
* This is a module which serves as a virtual ramdisk which disk size is
* limited by the amount of memory available and serves as the requirement for
* COSC440 assignment 1 in 2012.
*
* Note: multiple devices and concurrent modules are not supported in this
* version.
*/
/* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/list.h>
#include <asm/uaccess.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/proc_fs.h>
#include <linux/device.h>
#define MYDEV_NAME "asgn1"
#define MYIOC_TYPE 'k'
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Edward Hills");
MODULE_DESCRIPTION("COSC440 asgn1");
/**
* The node structure for the memory page linked list.
*/
typedef struct page_node_rec {
struct list_head list;
struct page *page;
} page_node;
typedef struct asgn1_dev_t {
dev_t dev; /* the device */
struct cdev *cdev;
struct list_head mem_list;
int num_pages; /* number of memory pages this module currently holds */
size_t data_size; /* total data size in this module */
atomic_t nprocs; /* number of processes accessing this device */
atomic_t max_nprocs; /* max number of processes accessing this device */
struct kmem_cache *cache; /* cache memory */
struct class *class; /* the udev class */
struct device *device; /* the udev device node */
} asgn1_dev;
asgn1_dev asgn1_device;
int asgn1_major = 0; /* major number of module */
int asgn1_minor = 0; /* minor number of module */
int asgn1_dev_count = 1; /* number of devices */
module_param(asgn1_major, int, S_IRUGO);
MODULE_PARM_DESC(asgn1_major, "device major number");
/**
* This function frees all memory pages held by the module.
*/
void free_memory_pages(void) {
page_node *curr;
page_node *temp;
// free all the pages then delete page_nodes
list_for_each_entry_safe(curr, temp, &(asgn1_device.mem_list), list) {
if (curr->page != NULL) {
__free_page(curr->page);
}
list_del(&(curr->list));
kmem_cache_free(asgn1_device.cache, curr);
}
asgn1_device.num_pages = 0;
asgn1_device.data_size = 0;
}
/**
* This function opens the virtual disk, if it is opened in the write-only
* mode, all memory pages will be freed.
*/
int asgn1_open(struct inode *inode, struct file *filp) {
// check there arent too many proccesses already
if (atomic_read(&asgn1_device.nprocs) >= atomic_read(&asgn1_device.max_nprocs)) {
printk(KERN_ERR "(exit): Too many processes are accessing this device\n");
return -EBUSY;
}
atomic_inc(&asgn1_device.nprocs);
// if opened in write only free everything we had previously
if ((filp->f_flags & O_ACCMODE) == O_WRONLY) {
free_memory_pages();
}
printk(KERN_INFO " attempting to open device: %s\n", MYDEV_NAME);
printk(KERN_INFO " MAJOR number = %d, MINOR number = %d\n",
imajor(inode), iminor(inode));
return 0;
}
/*
* This function releases the virtual disk, but nothing needs to be done
* in this case.
*/
int asgn1_release (struct inode *inode, struct file *filp) {
atomic_dec(&asgn1_device.nprocs);
printk(KERN_INFO " closing character device: %s\n\n", MYDEV_NAME);
return 0;
}
/**
* This function reads contents of the virtual disk and writes to the user
*/
ssize_t asgn1_read(struct file *filp, char __user *buf, size_t count,
loff_t *f_pos) {
size_t size_read = 0; /* size read from virtual disk in this function */
size_t begin_offset; /* the offset from the beginning of a page to
start reading */
int begin_page_no = *f_pos / PAGE_SIZE; /* the first page which contains
the requested data */
int curr_page_no = 0; /* the current page number */
size_t curr_size_read; /* size read from the virtual disk in this round */
size_t size_to_be_read; /* size to be read in the current round in
while loop */
struct list_head *ptr = &asgn1_device.mem_list;
page_node *curr;
if (*f_pos >= asgn1_device.data_size) {
printk(KERN_ERR "Reached end of the device on a read");
return 0;
}
begin_offset = *f_pos % PAGE_SIZE;
list_for_each_entry(curr, ptr, list) {
if (begin_page_no <= curr_page_no) {
do {
if (count <= asgn1_device.data_size) {
size_to_be_read = min(((int)PAGE_SIZE - begin_offset), (count - size_read));
} else {
count = asgn1_device.data_size;
size_to_be_read = min(((int)PAGE_SIZE - begin_offset), (count - size_read));
}
curr_size_read = size_to_be_read - copy_to_user(buf + size_read,
page_address(curr->page) + begin_offset, size_to_be_read);
size_read += curr_size_read;
size_to_be_read -= curr_size_read;
begin_offset += curr_size_read;
} while(size_to_be_read > 0);
begin_offset = 0;
if (size_read == count) {
break;
}
}
curr_page_no++;
}
printk(KERN_INFO "Read %d bytes\n", (int)size_read);
*f_pos += size_read;
return size_read;
}
/**
* This function allows the user to seek to a certain position in the
* device from the position specified in the cmd parameter.
*/
static loff_t asgn1_lseek (struct file *file, loff_t offset, int cmd)
{
loff_t testpos;
size_t buffer_size = asgn1_device.num_pages * PAGE_SIZE;
// depending on where im to seek from start there
switch(cmd) {
case SEEK_SET:
testpos = offset;
break;
case SEEK_CUR:
testpos = file->f_pos + offset;
case SEEK_END:
testpos = asgn1_device.data_size + offset;
break;
default:
return -EINVAL;
}
if (testpos > buffer_size) {
testpos = buffer_size;
} else if (testpos < 0) {
testpos = 0;
}
file->f_pos = testpos;
printk (KERN_INFO "Seeking to pos=%ld\n", (long)testpos);
return testpos;
}
/**
* This function writes from the user buffer to the virtual disk of this
* module
*/
ssize_t asgn1_write(struct file *filp, const char __user *buf, size_t count,
loff_t *f_pos) {
size_t orig_f_pos = *f_pos; /* the original file position */
size_t size_written = 0; /* size written to virtual disk in this function */
size_t begin_offset; /* the offset from the beginning of a page to
start writing */
int begin_page_no = *f_pos / PAGE_SIZE; /* the first page this function
should start writing to */
int curr_page_no = 0; /* the current page number */
size_t curr_size_written; /* size written to virtual disk in this round */
size_t size_to_be_written; /* size to be read in the current round in
while loop */
struct list_head *ptr = asgn1_device.mem_list.next;
page_node *curr;
// check they didnt tell me to start where i dont have
if (orig_f_pos > asgn1_device.data_size) {
printk(KERN_WARNING "Reached end of the device on a write");
return 0;
}
begin_offset = *f_pos / PAGE_SIZE;
while (count > size_written) {
curr = list_entry(ptr, page_node, list);
if (ptr == &(asgn1_device.mem_list)) {
// ive run out of pages so better get a new one!
if ((curr = kmem_cache_alloc(asgn1_device.cache, GFP_KERNEL)) == NULL) {
printk(KERN_ERR "Not enough memory left\n");
return -ENOMEM;
}
if ((curr->page = alloc_page(GFP_KERNEL)) == NULL) {
printk(KERN_ERR "Not enough memory left\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&(curr->list));
list_add_tail(&(curr->list), &(asgn1_device.mem_list));
asgn1_device.num_pages++;
ptr = asgn1_device.mem_list.prev;
} else if (curr_page_no < begin_page_no) {
curr_page_no++;
ptr = ptr->next;
} else {
do {
// write to the page
size_to_be_written = min(((int)PAGE_SIZE - begin_offset), (count - size_written));
curr_size_written = size_to_be_written - copy_from_user(page_address(curr->page)
+ begin_offset, buf + size_written, size_to_be_written);
size_written += curr_size_written;
size_to_be_written -= curr_size_written;
begin_offset += curr_size_written;
asgn1_device.data_size += curr_size_written;
// finished writing so now update page and ptr and move on
} while (curr_size_written < size_to_be_written);
begin_offset = 0;
curr_page_no++;
ptr = ptr->next;
}
}
*f_pos += size_written;
asgn1_device.data_size = max(asgn1_device.data_size,
orig_f_pos + size_written);
printk(KERN_ERR "Wrote %d bytes\n", (int)size_written);
return size_written;
}
#define SET_NPROC_OP 1
#define TEM_SET_NPROC _IOW(MYIOC_TYPE, SET_NPROC_OP, int)
/**
* The ioctl function, which nothing needs to be done in this case.
*/
long asgn1_ioctl (struct file *filp, unsigned int cmd, unsigned long arg) {
int nr;
int new_nprocs;
int result;
// check that the command is actually for my type of device
if (_IOC_TYPE(cmd) != MYIOC_TYPE) {
printk(KERN_WARNING "Invalid comand CMD=%d, for this type.\n", cmd);
return -EINVAL;
}
nr = _IOC_NR(cmd);
if (nr == SET_NPROC_OP) {
if(get_user(new_nprocs, (int *)arg) != 0) {
printk(KERN_ERR "Cannot read arg value.\n");
return -1;
}
// make sure im not lowering maxprocs when more processes are accessing this device
if (new_nprocs < atomic_read(&asgn1_device.nprocs) ) {
printk(KERN_ERR "Cannot set maximum number of processes to %d because too many processes are currently accessing this device.\n", new_nprocs);
result = -1;
} else {
atomic_set(&asgn1_device.max_nprocs, new_nprocs);
result = 0;
}
return result;
}
printk(KERN_WARNING "Invalid comand nr=%d, for this type.\n", nr);
return -ENOTTY;
}
/**
* Displays information about current status of the module,
* which helps debugging.
*/
int asgn1_read_procmem(char *buf, char **start, off_t offset, int count,
int *eof, void *data) {
int result;
// write data about this device to proc
result = snprintf(buf + offset, count + 1, "Character device driver: %s\n", MYDEV_NAME);
result += snprintf(buf + offset + result, count + 1, "Number of pages used: %d\n", (int)asgn1_device.num_pages);
result += snprintf(buf + offset + result, count + 1, "Size of this device: %d\n", (int)asgn1_device.data_size);
result += snprintf(buf + offset + result, count + 1, "Number of processess accessing this device: %d\n", (int)atomic_read(&asgn1_device.nprocs));
// set eof so we know we are done writing
if (result <= offset + count) {
*eof = 1;
}
*start = buf + offset;
result -= offset;
if (result > count)
result = count;
if (result < 0)
result = 0;
return result;
}
/*
* mmap function will map memory between the user and kernel boundary so both
* parties are able to access the memory.
*/
static int asgn1_mmap (struct file *filp, struct vm_area_struct *vma)
{
unsigned long pfn;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long len = vma->vm_end - vma->vm_start;
unsigned long ramdisk_size = asgn1_device.num_pages * PAGE_SIZE;
page_node *curr;
unsigned long index = 0;
unsigned long count = 0;
if (offset % PAGE_SIZE != 0 || offset > ramdisk_size) {
printk(KERN_ERR "Offset must be on valid page boundary.\n");
return -EAGAIN;
} else if (len % PAGE_SIZE != 0) {
printk(KERN_ERR "Length must be on a multiple of page_size.\n");
return -EAGAIN;
} else if (len + offset > ramdisk_size) {
printk(KERN_ERR "You are trying to write past the ramdisk\n");
return -EAGAIN;
}
list_for_each_entry(curr, &asgn1_device.mem_list, list) {
if (index >= vma->vm_pgoff) {
pfn = page_to_pfn(curr->page);
remap_pfn_range(vma, vma->vm_start + (index * PAGE_SIZE),
pfn, PAGE_SIZE, vma->vm_page_prot);
count++;
if (len <= PAGE_SIZE * count) {
return 0;
}
}
index++;
}
return 0;
}
struct file_operations asgn1_fops = {
.owner = THIS_MODULE,
.read = asgn1_read,
.write = asgn1_write,
.unlocked_ioctl = asgn1_ioctl,
.open = asgn1_open,
.mmap = asgn1_mmap,
.release = asgn1_release,
.llseek = asgn1_lseek
};
/**
* Initialise the module and create the master device
*/
int __init asgn1_init_module(void){
int result;
asgn1_device.dev = MKDEV(asgn1_major, 0);
atomic_set(&asgn1_device.max_nprocs, 1);
atomic_set(&asgn1_device.nprocs, 0);
asgn1_device.data_size = 0;
if (asgn1_major) {
// try register given major number
result = register_chrdev_region(asgn1_device.dev, asgn1_dev_count, "Eds_char_device");
if (result < 0) {
// uh oh didnt work better get system to allocate it
printk(KERN_WARNING "Can't use the major number %d; trying automatic allocation..\n", asgn1_major);
// check if system can give me a number or die
if ((result = alloc_chrdev_region(&asgn1_device.dev, asgn1_major, asgn1_dev_count, MYDEV_NAME)) < 0) {
printk(KERN_ERR "Failed to allocate character device region\n");
return -1;
}
asgn1_major = MAJOR(asgn1_device.dev);
}
}
else {
// user hasnt given me a major number so ill make my own
if ((result = alloc_chrdev_region(&asgn1_device.dev, asgn1_major, asgn1_dev_count, MYDEV_NAME)) < 0) {
printk(KERN_ERR "Failed to allocate character device region\n");
return -1;
}
asgn1_major = MAJOR(asgn1_device.dev);
}
// allocate cdev
if (!(asgn1_device.cdev = cdev_alloc())) {
printk(KERN_ERR "cdev_alloc() failed.\n");
unregister_chrdev_region(asgn1_device.dev, asgn1_dev_count);
return -1;
}
// init cdev
cdev_init(asgn1_device.cdev, &asgn1_fops);
asgn1_device.cdev->owner = THIS_MODULE;
// add cdev
if (cdev_add(asgn1_device.cdev, asgn1_device.dev, asgn1_dev_count) < 0) {
printk(KERN_ERR "cdev_add() failed.\n");
cdev_del(asgn1_device.cdev);
unregister_chrdev_region(asgn1_device.dev, asgn1_dev_count);
return -1;
}
// initiliase page list
INIT_LIST_HEAD(&(asgn1_device.mem_list));
// setup kmem cache
asgn1_device.cache = kmem_cache_create("asgn1_cache", sizeof(page_node), 0, 0, NULL);
// initialise proc
if (create_proc_read_entry(MYDEV_NAME, S_IRUSR | S_IRGRP | S_IROTH, NULL, asgn1_read_procmem, NULL) == NULL) {
printk(KERN_ERR "Error: Could not initialize /proc/%s/\n", MYDEV_NAME);
result = -ENOMEM;
goto fail_class;
}
// create class
asgn1_device.class = class_create(THIS_MODULE, MYDEV_NAME);
if (IS_ERR(asgn1_device.class)) {
printk(KERN_WARNING "%s: can't create udev class\n", MYDEV_NAME);
result = -ENOMEM;
goto fail_class;
}
// create device
asgn1_device.device = device_create(asgn1_device.class, NULL,
asgn1_device.dev, "%s", MYDEV_NAME);
if (IS_ERR(asgn1_device.device)) {
printk(KERN_WARNING "%s: can't create udev device\n", MYDEV_NAME);
result = -ENOMEM;
goto fail_device;
}
printk(KERN_WARNING "set up udev entry\n");
printk(KERN_WARNING "Hello world from %s\n", MYDEV_NAME);
return 0;
// cleanup if class init fails
fail_class:
remove_proc_entry(MYDEV_NAME, NULL);
list_del_init(&asgn1_device.mem_list);
kmem_cache_destroy(asgn1_device.cache);
cdev_del(asgn1_device.cdev);
unregister_chrdev_region(asgn1_device.dev, asgn1_dev_count);
return result;
// cleanup if device init fails
fail_device:
class_destroy(asgn1_device.class);
goto fail_class;
}
/**
* Finalise the module
*/
void __exit asgn1_exit_module(void){
// free and destroy things set up in reverse order
device_destroy(asgn1_device.class, asgn1_device.dev);
class_destroy(asgn1_device.class);
remove_proc_entry(MYDEV_NAME, NULL);
printk(KERN_WARNING "cleaned up udev entry\n");
free_memory_pages();
list_del_init(&asgn1_device.mem_list);
kmem_cache_destroy(asgn1_device.cache);
cdev_del(asgn1_device.cdev);
unregister_chrdev_region(asgn1_device.dev, asgn1_dev_count);
printk(KERN_WARNING "Good bye from %s\n", MYDEV_NAME);
}
module_init(asgn1_init_module);
module_exit(asgn1_exit_module);