-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgoVAR200811.m
563 lines (445 loc) · 18.3 KB
/
goVAR200811.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
%% Standard linear VAR of <<Forecasting with Shadow-Rate VARs>> per Nov 2008 (last pre ELB obs)
% by Carriero, Clark, Marcellino and Mertens (2025)
% The working paper and supplementary appendices are available here: https://github.com/elmarmertens/CCMMshadowrateVAR-code
%
% Recursive estimation of quasi-real-time forecasts
%#ok<*NOSEL>
%#ok<*DISPLAYPROG>
%#ok<*UNRCH>
%#ok<*DATNM>
%#ok<*DATST>
%% load em toolboxes
warning('off','MATLAB:handle_graphics:exceptions:SceneNode')
path(pathdef)
addpath matlabtoolbox/emtools/
addpath matlabtoolbox/emtexbox/
addpath matlabtoolbox/emgibbsbox/
addpath matlabtoolbox/emeconometrics/
addpath matlabtoolbox/emstatespace/
addpath matlabtoolbox/empbsbox/
%% Initial operations
clear; close all; clc;
tic % start clocking time
% NOTE: to utilize multiple cores, "parpool" must be started prior to executing the script
% (or MATLAB must be enabled to launch parpool as needed)
% otherwise, only a single core gets used (and Nstreams will return 1 after executing the next line)
Nstreams = max(1,getparpoolsize);
rndStreams = parallel.pool.Constant(RandStream('Threefry'));
%% set parameters for VAR and MCMC
datalabel = 'fredsxMD20exYield-2022-09';
doQuarterly = false;
doRATSprior = true;
MCMCdraws = 1e3; % Final number of MCMC draws after burn in
fcstNdraws = 10 * MCMCdraws; % draws sampled from predictive density
ELBbound = 0.25;
if doQuarterly
p = 4;
np = 4; % number of periods per year, used for calibrating priors
datalabel = strcat(datalabel, '-quarterly');
else
p = 12;
np = 12;
end
% SED-PARAMETERS-HERE
doStoreXL = false; %#ok<*NASGU>
check_stationarity = 0; % Truncate nonstationary draws? (1=yes)
Compute_diagnostics = false; % compute Inefficiency Factors and Potential
doLoMem = true; % do not store memory intensive stuff, just do oos forecasts
doPlotData = false;
samStart = []; % truncate start of sample if desired (leave empty if otherwise)
if doLoMem
doStoreXL = false;
end
%% load data
% load CSV file
dum=importdata(sprintf('%s.csv', datalabel),',');
ydates=dum.data(3:end,1);
% Variable names
ncode=dum.textdata(1,2:end);
% Transformation codes (data are already transformed)
tcode =dum.data(1,2:end);
cumcode=logical(dum.data(2,2:end));
cumcode(tcode == 5) = 1;
% Data
data=dum.data(3:end,2:end);
setShadowYields
Nyields = length(ndxYIELDS);
Nshadowrates = length(ndxSHADOWRATE);
Tdata = length(ydates);
Ylabels = fredMDprettylabel(ncode);
%% process settings
N = size(data,2);
Kbvar = N * p + 1; % number of regressors per equation
K = Kbvar;
modellabel = 'standardVARAR1SV200811';
if ELBbound ~= 0.25
modellabel = strcat(modellabel, sprintf('-ELB%d', ELBbound * 1000));
end
if doRATSprior
modellabel = strcat(modellabel, '-RATSbvarshrinkage');
end
% truncate start of sample (if desired)
if ~isempty(samStart)
ndx = ydates >= samStart;
data = data(ndx,:);
ydates = ydates(ndx);
Tdata = length(ydates);
end
% define oos jump offs
Tjumpoffs = find(ydates == datenum(2008,11,1));
Njumpoffs = length(Tjumpoffs);
% other settings
setQuantiles = [.5, 2.5, 5, normcdf(-1) * 100, 25 , 75, (1 - normcdf(-1)) * 100, 95, 97.5, 99.5];
Nquantiles = length(setQuantiles);
fractiles = [normcdf(-1) * 100, 100 - normcdf(-1) * 100];
ndxCI68 = ismember(setQuantiles, fractiles);
ndxCI90 = ismember(setQuantiles, [5 95]);
ndxCI = ndxCI68 | ndxCI90;
%% mean for Minnesota prior
setMinnesotaMean
%% allocate memory for tracking random states
randomStates = NaN(17, Njumpoffs);
%% allocate memory for out-of-sample forecasts
fcstNhorizons = 48; % number of steps forecasted (1:fcstNhorizon)
% fcstYdraws = NaN(N,fcstNhorizons,fcstNdraws,Njumpoffs);
fcstYrealized = NaN(N,fcstNhorizons,Njumpoffs);
fcstYhatRB = NaN(N,fcstNhorizons,Njumpoffs); % predictive mean (linear RB)
% linear forecasts
fcstYhat = NaN(N,fcstNhorizons,Njumpoffs); % predictive mean
fcstYmedian = NaN(N,fcstNhorizons,Njumpoffs); % predictive median
fcstYhaterror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYmederror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcrps = NaN(N,fcstNhorizons,Njumpoffs);
fcstYquantiles = NaN(N,fcstNhorizons,Nquantiles, Njumpoffs);
fcstYmvlogscoreDraws = NaN(fcstNdraws,Njumpoffs); % one-step ahead only
fcstYmvlogscore = NaN(1,Njumpoffs); % one-step ahead only
fcstYmvlogscoreELBdraws = NaN(fcstNdraws,Njumpoffs); % one-step ahead only
fcstYmvlogscoreELB = NaN(1,Njumpoffs); % one-step ahead only
fcstYmvlogscoreXdraws = NaN(fcstNdraws,Njumpoffs); % one-step ahead only
fcstYmvlogscoreX = NaN(1,Njumpoffs); % one-step ahead only
fcstYmvlogscoreIdraws = NaN(fcstNdraws,Njumpoffs); % one-step ahead only
fcstYmvlogscoreI = NaN(1,Njumpoffs); % one-step ahead only
% cumulated forecasts
fcstYcumrealized = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcumhat = NaN(N,fcstNhorizons,Njumpoffs); % predictive mean
fcstYcummedian = NaN(N,fcstNhorizons,Njumpoffs); % predictive median
fcstYcumhaterror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcummederror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcumcrps = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcumquantiles = NaN(N,fcstNhorizons,Nquantiles, Njumpoffs);
% censored forecasts
fcstYcensorhat = NaN(N,fcstNhorizons,Njumpoffs); % predictive mean
fcstYcensormedian = NaN(N,fcstNhorizons,Njumpoffs); % predictive median
fcstYcensorhaterror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcensormederror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcensorcrps = NaN(N,fcstNhorizons,Njumpoffs);
fcstYcensorquantiles = NaN(N,fcstNhorizons,Nquantiles, Njumpoffs);
% shadow forecasts
fcstYshadowhat = NaN(N,fcstNhorizons,Njumpoffs); % predictive mean
fcstYshadowmedian = NaN(N,fcstNhorizons,Njumpoffs); % predictive median
fcstYshadowhaterror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYshadowmederror = NaN(N,fcstNhorizons,Njumpoffs);
fcstYshadowcrps = NaN(N,fcstNhorizons,Njumpoffs);
fcstYshadowquantiles = NaN(N,fcstNhorizons,Nquantiles, Njumpoffs);
[PAImedian, PAImean, PAIstdev] = deal(NaN(K, N, Njumpoffs));
PAIquantiles = NaN(K, N, Nquantiles, Njumpoffs);
[hRHOmedian, hRHOmean, hRHOstdev] = deal(NaN(N, Njumpoffs));
hRHOquantiles = NaN(N, Nquantiles, Njumpoffs);
[hBARmedian, hBARmean, hBARstdev] = deal(NaN(N, Njumpoffs));
hBARquantiles = NaN(N, Nquantiles, Njumpoffs);
%% allocate memory for MCMC output (ex forecast)
if ~doLoMem
drawsPAI = NaN(MCMCdraws, K, N, Njumpoffs);
drawsPHI = NaN(MCMCdraws, N*(N-1)/2+N, Njumpoffs);
drawsINVA = NaN(MCMCdraws, N, N, Njumpoffs);
drawsSQRTHT = NaN(MCMCdraws, Tdata, N, Njumpoffs);
%% allocate memory for IRF and sum of FFR coeffs
VMAmid = NaN(N,N,fcstNhorizons,Njumpoffs);
VMAtail = NaN(N,N,fcstNhorizons,Nquantiles,Njumpoffs);
if ~isempty(ndxSHADOWRATE)
sumFFRmid = NaN(N,Njumpoffs);
sumFFRtail = NaN(N,Nquantiles,Njumpoffs);
end
end
drawsMaxVARroot = NaN(MCMCdraws, Njumpoffs);
%% start latexwrapper to collect results
titlename=sprintf('%s-%s-p%d', datalabel, modellabel, p);
if ~isempty(samStart)
titlename = strcat(titlename, '-', datestr(samStart, 'yyyymmm'));
end
initwrap
% wrap = [];
%% plot input data
if doPlotData
for n = 1 : N
this = figure;
plot(ydates, data(:,n))
xtickdates(ydates)
wrapthisfigure(this, sprintf('data%s', ncode{n}), wrap)
end
end
%% loop over QRT estimates
% progressbar(0)
for ndxT = 1 : Njumpoffs % parfor
TID = parid;
thisT = Tjumpoffs(ndxT);
T = thisT - p;
thisStream = rndStreams.Value;
thisStream.Substream = ndxT;
fprintf('loop %d, thisT %d, with TID %d\n', ndxT, thisT, TID)
%% collect realized values (without cumulation)
thisdata = data; % to avoid parfor warning
yrealized = NaN(N, fcstNhorizons);
for h = 1 : fcstNhorizons
if thisT + h <= Tdata
yrealized(:,h) = thisdata(thisT+h,:)';
end
end
% set Funds Rate equal to ELB when at ELB
% (Note: ELB may be set higher than actual funds rate readings, e.g. 25bp)
if ~isempty(ELBbound)
yieldsrealized = yrealized(ndxSHADOWRATE,:);
ndx = yieldsrealized < ELBbound;
yieldsrealized(ndx) = ELBbound;
yrealized(ndxSHADOWRATE,:) = yieldsrealized;
end
%% MCMC sampler
mcmcOK = false;
while ~mcmcOK
try % catch crashes and continue
% launch mcmc sampler
[PAI_all, hRHO_all, hBAR_all, PHI_all, invA_all, sqrtht_all, ...
ydraws, yhat, ...
ycensordraws, ycensorhat, ...
yshadowdraws, yshadowhat, ...
yhatRB, logscoredraws, logscoreELBdraws, ...
logscoreXdraws, logscoreIdraws ...
] = mcmcVARAR1SV(thisT, MCMCdraws, p, np, data, ydates, ...
minnesotaPriorMean, doRATSprior, ...
ndxYIELDS, ELBbound, ...
check_stationarity, ...
yrealized, ...
fcstNdraws, fcstNhorizons, thisStream, true);
mcmcOK = true;
catch ME
fprintf('Crash at TID %d, thisT %d\n', TID, thisT)
fprintf('Error message: %s\n', ME.message)
continue
end
end
randomStates(:,ndxT) = thisStream.State;
%% Convergence diagnostics
if Compute_diagnostics
% display('computing convergence diagnostics..')
Diagnostics(sqrtht_all,invA_all,PAI_all,PHI_all,N,K,MCMCdraws);
end
%% compute out-of-sample forecasts
% a word on parfor strategy:
% to make matlab better see the intended use of sliced variabes, use
% local temp variables and then copy those into the slices at end of
% loop
% cumulated forecasts
ycumrealized = yrealized;
ycumdraws = ydraws;
ycumhat = yhat;
ycumrealized(cumcode,:) = cumsum(ycumrealized(cumcode,:),2); % ./ (1:fcstNhorizons);
ycumdraws(cumcode,:,:) = cumsum(ycumdraws(cumcode,:,:),2); % ./ (1:fcstNhorizons);
ycumhat(cumcode,:) = cumsum(ycumhat(cumcode,:),2); % ./ (1:fcstNhorizons);
% CRPS
yCRPS = NaN(N,fcstNhorizons);
for h = 1 : fcstNhorizons
for n = 1 : N % loop over elements of Y
yCRPS(n,h) = crpsDraws(yrealized(n,h), ydraws(n,h,:));
end
end
ycumCRPS = NaN(N,fcstNhorizons);
for h = 1 : fcstNhorizons
for n = 1 : N % loop over elements of Y
ycumCRPS(n,h) = crpsDraws(ycumrealized(n,h), ycumdraws(n,h,:));
end
end
ycensorCRPS = NaN(N,fcstNhorizons);
for h = 1 : fcstNhorizons
for n = 1 : N % loop over elements of Y
ycensorCRPS(n,h) = crpsDraws(yrealized(n,h), ycensordraws(n,h,:));
end
end
yshadowCRPS = NaN(N,fcstNhorizons);
for h = 1 : fcstNhorizons
for n = 1 : N % loop over elements of Y
yshadowCRPS(n,h) = crpsDraws(yrealized(n,h), yshadowdraws(n,h,:));
end
end
%% collect PAI moments
PAImedian(:,:,ndxT) = squeeze(median(PAI_all,1));
PAImean(:,:,ndxT) = squeeze(mean(PAI_all,1));
PAIstdev(:,:,ndxT) = squeeze(std(PAI_all,1,1));
PAIquantiles(:,:,:,ndxT) = permute(prctile(PAI_all,setQuantiles,1), [2 3 1]);
%% collect RHO moments
hRHOmedian(:,ndxT) = median(hRHO_all,1);
hRHOmean(:,ndxT) = mean(hRHO_all,1);
hRHOstdev(:,ndxT) = std(hRHO_all,1);
hRHOquantiles(:,:,ndxT) = transpose(prctile(hRHO_all,setQuantiles,1));
%% collect BAR moments
hBARmedian(:,ndxT) = median(hBAR_all,1);
hBARmean(:,ndxT) = mean(hBAR_all,1);
hBARstdev(:,ndxT) = std(hBAR_all,1);
hBARquantiles(:,:,ndxT) = transpose(prctile(hBAR_all,setQuantiles,1));
%% compute VMA / IRF
theseMaxlambdas = NaN(MCMCdraws, 1); % placed before doLoMem to avoid parfor warning
if doLoMem
% setup companion form matrix
comp = zeros(N * p);
comp(N + 1 : end,1:N*(p-1)) = eye(N*(p-1));
for m = 1 : MCMCdraws
thisPAI = squeeze(PAI_all(m,:,:));
comp(1:N,:) = thisPAI(2:Kbvar,:)';
% compute maxLambda
theseMaxlambdas(m) = max(abs(eig(comp)));
end
else
drawsVMA = NaN(N, N, fcstNhorizons, MCMCdraws);
% setup companion form matrix
comp = zeros(N * p);
comp(N + 1 : end,1:N*(p-1)) = eye(N*(p-1));
for m = 1 : MCMCdraws
thisPAI = squeeze(PAI_all(m,:,:));
comp(1:N,:) = thisPAI(2:Kbvar,:)';
% compute maxLambda
theseMaxlambdas(m) = max(abs(eig(comp)));
comppow = eye(N*p,N);
for h = 1 : fcstNhorizons
comppow = comp * comppow;
drawsVMA(:,:,h,m) = comppow(1:N,1:N);
end
end
VMAmid(:,:,:,ndxT) = median(drawsVMA,4);
VMAtail(:,:,:,:,ndxT) = prctile(drawsVMA, setQuantiles, 4);
%% collect sum of FEDFUNDS coefficients
if ~isempty(ndxSHADOWRATE)
ndxFFRcoef = NaN(p,1);
for i = 1 : p
ndxFFRcoef(i) = (i - 1) * N + ndxSHADOWRATE;
end
sumFFR = NaN(N,MCMCdraws);
for m = 1 : MCMCdraws
thisPAI = squeeze(PAI_all(m,2:Kbvar,:));
sumFFR(:,m) = sum(thisPAI(ndxFFRcoef,:),1);
end
sumFFRmid(:,ndxT) = median(sumFFR,2);
sumFFRtail(:,:,ndxT) = prctile(sumFFR,setQuantiles,2);
end
end
%% copy results into sliced variables
fcstYrealized(:,:,ndxT) = yrealized;
fcstYhatRB(:,:,ndxT) = yhatRB;
% predictive likelihood scores
fcstYmvlogscoreDraws(:,ndxT) = logscoredraws;
maxlogscoredraw = max(logscoredraws);
fcstYmvlogscore(:,ndxT) = log(mean(exp(logscoredraws - maxlogscoredraw))) + maxlogscoredraw;
fcstYmvlogscoreELBdraws(:,ndxT) = logscoreELBdraws;
maxlogscoredraw = max(logscoreELBdraws);
fcstYmvlogscoreELB(:,ndxT) = log(mean(exp(logscoreELBdraws - maxlogscoredraw))) + maxlogscoredraw;
fcstYmvlogscoreXdraws(:,ndxT) = logscoreXdraws;
maxlogscoredraw = max(logscoreXdraws);
fcstYmvlogscoreX(:,ndxT) = log(mean(exp(logscoreXdraws - maxlogscoredraw))) + maxlogscoredraw;
fcstYmvlogscoreIdraws(:,ndxT) = logscoreIdraws;
maxlogscoredraw = max(logscoreIdraws);
fcstYmvlogscoreI(:,ndxT) = log(mean(exp(logscoreIdraws - maxlogscoredraw))) + maxlogscoredraw;
% forecast
ymed = median(ydraws,3);
fcstYhat(:,:,ndxT) = yhat;
fcstYmedian(:,:,ndxT) = ymed;
fcstYhaterror(:,:,ndxT) = yrealized - yhat;
fcstYmederror(:,:,ndxT) = yrealized - ymed;
fcstYcrps(:,:,ndxT) = yCRPS;
fcstYquantiles(:,:,:,ndxT) = prctile(ydraws, setQuantiles, 3);
% cumulated forecast
fcstYcumrealized(:,:,ndxT) = ycumrealized;
ymed = median(ycumdraws,3);
fcstYcumhat(:,:,ndxT) = ycumhat;
fcstYcummedian(:,:,ndxT) = ymed;
fcstYcumhaterror(:,:,ndxT) = ycumrealized - ycumhat;
fcstYcummederror(:,:,ndxT) = ycumrealized - ymed;
fcstYcumcrps(:,:,ndxT) = ycumCRPS;
fcstYcumquantiles(:,:,:,ndxT) = prctile(ycumdraws, setQuantiles, 3);
% censored forecast
ymed = median(ycensordraws,3);
fcstYcensorhat(:,:,ndxT) = ycensorhat;
fcstYcensormedian(:,:,ndxT) = ymed;
fcstYcensorhaterror(:,:,ndxT) = yrealized - ycensorhat;
fcstYcensormederror(:,:,ndxT) = yrealized - ymed;
fcstYcensorcrps(:,:,ndxT) = ycensorCRPS;
fcstYcensorquantiles(:,:,:,ndxT) = prctile(ycensordraws, setQuantiles, 3);
% shadow forecast
ymed = median(yshadowdraws,3);
fcstYshadowhat(:,:,ndxT) = yshadowhat;
fcstYshadowmedian(:,:,ndxT) = ymed;
fcstYshadowhaterror(:,:,ndxT) = yrealized - yshadowhat;
fcstYshadowmederror(:,:,ndxT) = yrealized - ymed;
fcstYshadowcrps(:,:,ndxT) = yshadowCRPS;
fcstYshadowquantiles(:,:,:,ndxT) = prctile(yshadowdraws, setQuantiles, 3);
% copy mcmc output
drawsMaxVARroot(:,ndxT) = theseMaxlambdas;
if ~doLoMem
drawsPAI(:,:,:,ndxT) = PAI_all;
drawsPHI(:,:,ndxT) = PHI_all;
drawsINVA(:,:,:,ndxT) = invA_all;
% prepare dummy to make parfor work
dummy = NaN(MCMCdraws, Tdata, N);
dummy(:, p+1:thisT, :) = sqrtht_all;
drawsSQRTHT(:, :, :, ndxT) = dummy;
end
end
%% collect computer system info
thisArch = computer('arch');
COMPUTERmatlab = ver;
if ismac
[~, COMPUTERsys] = system('sysctl -a | grep machdep.cpu ', '-echo');
[~, COMPUTERbrand] = system('sysctl -a | grep machdep.cpu | grep brand_string ', '-echo');
if contains(COMPUTERbrand, 'M1') || contains(COMPUTERbrand, 'M2') || contains(COMPUTERbrand, 'M3') || contains(COMPUTERbrand, 'M4')
COMPUTERbrand = 'AppleSilicon';
else
COMPUTERbrand = 'MacOSIntel';
end
elseif isunix
[~, COMPUTERsys] = system('cat /proc/cpuinfo ', '-echo');
COMPUTERbrand = 'IntelUbuntu';
else % ispc
COMPUTERsys = 'Intel(R) Xeon(R) Gold 6248R CPU @ 3.0 GHz';
COMPUTERbrand = 'WindowsXeon';
end
COMPUTERnstreams = Nstreams;
COMPUTERtotaltime = toc; % stop clocking time
%% store qrt summary
matfilename = sprintf('%s-%s-p%d', datalabel, modellabel, p);
if ~isempty(samStart)
matfilename = strcat(matfilename, '-', datestr(samStart, 'yyyymmm'));
end
varlist = {'data', 'ydates', 'p', 'Tjumpoffs', 'N', ...
'ncode', 'tcode', 'cumcode', ...
'fcst*', 'fcstNhorizons', ...
'*Maxlambda*', ...
'PAI*', 'hRHO*', 'hBAR*', ...
'ndxSHADOWRATE', 'ndxYIELDS', 'ndxOTHERYIELDS', 'ELBbound',...
'datalabel', 'modellabel', ...
'doQuarterly', ...
'setQuantiles', ...
'MCMCdraws', ...
'randomStates', ...
'COMPUTER*'};
if ~doLoMem
if ~isempty(ndxSHADOWRATE)
varlist = cat(2, varlist, 'sumFFR*');
end
varlist = cat(2, varlist, 'VMA*');
end
if doStoreXL
matfilename = sprintf('%s-%s-p%d-draws', datalabel, modellabel, p);
save(matfilename, varlist{:}, 'draws*', '-v7.3');
end
clear *_all
save(matfilename, varlist{:}, '-v7.3');
%% wrap up
dockAllFigures
finishwrap