From c07ce1bca97d76f0fbbcc77aa0cef86bb56e81a4 Mon Sep 17 00:00:00 2001
From: "github-actions[bot]" name (str) – A short name for the ellipsoid, for example semimajor_axis (float) – The semimajor axis of the ellipsoid. The equatorial (large) radius.
+ name (str) – A short name for the ellipsoid, for example semimajor_axis (float) – The semimajor axis of the ellipsoid. The equatorial (large) radius.
Definition: \(a\).
Units: \(m\). flattening (float) – The (first) flattening of the ellipsoid.
+ flattening (float) – The (first) flattening of the ellipsoid.
Definition: \(f = (a - b)/a\).
Units: adimensional. geocentric_grav_const (float) – The geocentric gravitational constant. The product of the mass of the
+ geocentric_grav_const (float) – The geocentric gravitational constant. The product of the mass of the
ellipsoid \(M\) and the gravitational constant \(G\).
Definition: \(GM\). Units:
\(m^3.s^{-2}\). angular_velocity (float) – The angular velocity of the rotating ellipsoid.
+ angular_velocity (float) – The angular velocity of the rotating ellipsoid.
Definition: \(\omega\).
Units: \(\\rad.s^{-1}\). long_name (str or None) – A long name for the ellipsoid, for example long_name (str or None) – A long name for the ellipsoid, for example reference (str or None) – Citation for the ellipsoid parameter values (optional). reference (str or None) – Citation for the ellipsoid parameter values (optional). latitude (float or array) – Latitude coordinates on geodetic coordinate system in degrees. geodetic (bool) – If True (default), will assume that latitudes are geodetic
+ latitude (float or array) – Latitude coordinates on geodetic coordinate system in degrees. geodetic (bool) – If True (default), will assume that latitudes are geodetic
latitudes. Otherwise, will assume that they are geocentric
spherical latitudes. latitude (float or array) – The geodetic latitude where the normal gravity will be computed (in
+ latitude (float or array) – The geodetic latitude where the normal gravity will be computed (in
degrees). height (float or array) – The ellipsoidal (geometric) height of computation the point (in
+ height (float or array) – The ellipsoidal (geometric) height of computation the point (in
meters). si_units (bool) – Return the value in mGal (False, default) or m/s² (True) si_units (bool) – Return the value in mGal (False, default) or m/s² (True) sinlat (float or array-like) – Sine of the geocentric geodetic latitude. sinlat (float or array-like) – Sine of the geocentric geodetic latitude. prime_vertical_radius (float or array-like) – Prime vertical radius given in the same units as the semi-major
@@ -914,8 +914,8 @@ name (str) – A short name for the sphere, for example radius (float) – The radius of the sphere.
+ name (str) – A short name for the sphere, for example radius (float) – The radius of the sphere.
Definition: \(R\).
Units: \(m\). geocentric_grav_const (float) – The geocentric gravitational constant. The product of the mass of the
+ geocentric_grav_const (float) – The geocentric gravitational constant. The product of the mass of the
sphere \(M\) and the gravitational constant \(G\).
Definition: \(GM\). Units:
\(m^3.s^{-2}\). angular_velocity (float) – The angular velocity of the rotating sphere.
+ angular_velocity (float) – The angular velocity of the rotating sphere.
Definition: \(\omega\).
Units: \(\\rad.s^{-1}\). long_name (str or None) – A long name for the sphere, for example long_name (str or None) – A long name for the sphere, for example reference (str or None) – Citation for the sphere parameter values (optional). reference (str or None) – Citation for the sphere parameter values (optional). The volume of the sphere.
+Definition: \(V = \dfrac{4}{3} \pi r^3\).
+Units: \(m^3\). height (float or array) – The height above the surface of the sphere of the computation point
+ height (float or array) – The height above the surface of the sphere of the computation point
(in meters). si_units (bool) – Return the value in mGal (False, default) or m/s² (True) si_units (bool) – Return the value in mGal (False, default) or m/s² (True) latitude (float or array) – The spherical latitude where the normal gravity will be computed
+ latitude (float or array) – The spherical latitude where the normal gravity will be computed
(in degrees). height (float or array) – The height above the surface of the sphere of the computation point
+ height (float or array) – The height above the surface of the sphere of the computation point
(in meters). si_units (bool) – Return the value in mGal (False, default) or m/s² (True) si_units (bool) – Return the value in mGal (False, default) or m/s² (True) name (str) – A short name for the ellipsoid, for example semimajor_axis (float) – The semimajor (largest) axis of the ellipsoid.
+ name (str) – A short name for the ellipsoid, for example semimajor_axis (float) – The semimajor (largest) axis of the ellipsoid.
Definition: \(a\).
Units: \(m\). semimedium_axis (float) – The semimedium (middle) axis of the ellipsoid.
+ semimedium_axis (float) – The semimedium (middle) axis of the ellipsoid.
Definition: \(b\).
Units: \(m\). semiminor_axis (float) – The semiminor (smallest) axis of the ellipsoid.
+ semiminor_axis (float) – The semiminor (smallest) axis of the ellipsoid.
Definition: \(c\).
Units: \(m\). geocentric_grav_const (float) – The geocentric gravitational constant. The product of the mass of the
+ geocentric_grav_const (float) – The geocentric gravitational constant. The product of the mass of the
ellipsoid \(M\) and the gravitational constant \(G\).
Definition: \(GM\). Units:
\(m^3.s^{-2}\). angular_velocity (float) – The angular velocity of the rotating ellipsoid.
+ angular_velocity (float) – The angular velocity of the rotating ellipsoid.
Definition: \(\omega\).
Units: \(\\rad.s^{-1}\). long_name (str or None) – A long name for the ellipsoid, for example long_name (str or None) – A long name for the ellipsoid, for example reference (str or None) – Citation for the ellipsoid parameter values (optional). reference (str or None) – Citation for the ellipsoid parameter values (optional). The equatorial flattening of the ellipsoid.
+Definition: \(f_b = \frac{a - b}{a}\).
+Units: adimensional.Source code for boule._ellipsoid
/ (1.5 * ((1 + 3 * ratio**2) * arctan - 3 * ratio))
)
result = (
- self.geocentric_grav_const
- * (1 + self._emm * aux)
- / self.semimajor_axis**2
+ self.geocentric_grav_const * (1 + self._emm * aux) / self.semimajor_axis**2
)
return result
@@ -791,9 +789,7 @@
Source code for boule._ellipsoid
.. [2] See https://en.wikipedia.org/wiki/Earth_radius#Prime_vertical
"""
- return self.semimajor_axis / np.sqrt(
- 1 - self.first_eccentricity**2 * sinlat**2
- )
Source code for boule._ellipsoid
diff --git a/dev/_modules/boule/_sphere.html b/dev/_modules/boule/_sphere.html
index c9e014ba..37ea019b 100644
--- a/dev/_modules/boule/_sphere.html
+++ b/dev/_modules/boule/_sphere.html
@@ -473,6 +473,8 @@ Source code for boule._sphere
0
>>> print(sphere.thirdflattening)
0
+ >>> print(f"{sphere.volume:.10f} m³")
+ 4.1887902048 m³
"""
@@ -550,6 +552,15 @@
Source code for boule._sphere
"""
return 0
+ @property
+ def volume(self):
+ r"""
+ The volume of the sphere.
+ Definition: :math:`V = \dfrac{4}{3} \pi r^3`.
+ Units: :math:`m^3`.
+ """
+ return (4 / 3 * np.pi) * self.radius**3
+
Source code for boule._sphere
diff --git a/dev/_modules/boule/_triaxialellipsoid.html b/dev/_modules/boule/_triaxialellipsoid.html
index 18dc6cf5..4e461ef2 100644
--- a/dev/_modules/boule/_triaxialellipsoid.html
+++ b/dev/_modules/boule/_triaxialellipsoid.html
@@ -559,7 +559,118 @@ Source code for boule._triaxialellipsoid
* self.semimajor_axis
* self.semimedium_axis
* self.semiminor_axis
- )
Source code for boule._triaxialellipsoid
diff --git a/dev/_modules/index.html b/dev/_modules/index.html
index c05521eb..36776296 100644
--- a/dev/_modules/index.html
+++ b/dev/_modules/index.html
@@ -393,8 +393,8 @@ All modules for which code is available
diff --git a/dev/_sources/api/generated/boule.Sphere.rst.txt b/dev/_sources/api/generated/boule.Sphere.rst.txt
index b23b819c..ff5d936a 100644
--- a/dev/_sources/api/generated/boule.Sphere.rst.txt
+++ b/dev/_sources/api/generated/boule.Sphere.rst.txt
@@ -36,6 +36,10 @@ Attributes
+.. autoattribute:: Sphere.volume
+
+
+
Methods
diff --git a/dev/_sources/api/generated/boule.TriaxialEllipsoid.rst.txt b/dev/_sources/api/generated/boule.TriaxialEllipsoid.rst.txt
index 924c0158..b637a429 100644
--- a/dev/_sources/api/generated/boule.TriaxialEllipsoid.rst.txt
+++ b/dev/_sources/api/generated/boule.TriaxialEllipsoid.rst.txt
@@ -12,10 +12,18 @@ Attributes
+.. autoattribute:: TriaxialEllipsoid.equatorial_flattening
+
+
+
.. autoattribute:: TriaxialEllipsoid.mean_radius
+.. autoattribute:: TriaxialEllipsoid.meridional_flattening
+
+
+
.. autoattribute:: TriaxialEllipsoid.volume
@@ -31,6 +39,10 @@ Methods
+
+ TriaxialEllipsoid.geocentric_radius
+
+
.. rubric:: Methods documentation
@@ -38,6 +50,13 @@ Methods
+.. automethod:: TriaxialEllipsoid.geocentric_radius
+
+----
+
+
+
+
.. raw:: html
diff --git a/dev/_sources/references.rst.txt b/dev/_sources/references.rst.txt
index 8d9dc7ed..840f01c7 100644
--- a/dev/_sources/references.rst.txt
+++ b/dev/_sources/references.rst.txt
@@ -11,3 +11,4 @@ References
.. [Russell2012] Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., et al. (2012). Dawn at Vesta: Testing the Protoplanetary Paradigm. Science. doi:`10.1126/science.1219381 boule.Ellipsoid
-
"WGS84"
."WGS84"
."World Geodetic System
+
"World Geodetic System
1984"
(optional).Methods
-
@@ -804,11 +804,11 @@ Methods
-
Methods
Methods
boule.Sphere
-
"Moon"
."Moon"
."Moon Reference System"
+"Moon Reference System"
(optional).boule.Sphere0
>>> print(sphere.thirdflattening)
0
+>>> print(f"{sphere.volume:.10f} m³")
+4.1887902048 m³
Attributes
+
Methods#
@@ -654,9 +664,9 @@ Methods
-
Methods
-
Methods
boule.TriaxialEllipsoid
-
"WGS84"
."WGS84"
."World Geodetic System
+
"World Geodetic System
1984"
(optional).boule.TriaxialEllipsoid
Attributes#
+
+
+
The meridional flattening of the ellipsoid in the meridian plane +containing the semi-major axis. +Definition: \(f_c = \frac{a - c}{a}\). +Units: adimensional.
+TriaxialEllipsoid.geocentric_radius
(...[, ...])
Radial distance from the center of the ellipsoid to its surface.
Methods documentation
+Radial distance from the center of the ellipsoid to its surface.
+Assumes geocentric spherical latitude and geocentric spherical +longitudes. The geocentric radius is calculated following [Pec1983].
+longitude (float or array) – Longitude coordinates on spherical coordinate system in degrees.
latitude (float or array) – Latitude coordinates on spherical coordinate system in degrees.
longitude_semimajor_axis (float (optional)) – Longitude coordinate of the meridian containing the semi-major axis +on spherical coordinate system in degrees. Optional, default value +is 0.0.
geocentric_radius (float or array) – The geocentric radius for the given spherical latitude(s) and +spherical longitude(s) in the same units as the axes of the +ellipsoid.
+Tip
+No elevation is taken into account.
+Notes
+Given geocentric spherical latitude \(\phi\) and geocentric +spherical longitude \(\lambda\), the geocentric surface radius +\(R\) is computed as (see Eq. 1 of [Pec1983])
+where \(f_c\) is the meridional flattening
+\(f_b\) is the equatorial flattening
+with \(a\), \(b\) and \(c\) being the semi-major, +semi-medium and semi-minor axes of the ellipsoid, and \(\lambda_a\) +being the geocentric spherical longitude of the meridian containing the +semi-major axis.
+Note that [Pec1983] use geocentric spherical co-latitude, while here +we used geocentric spherical latitude.
+You can use pip
to install the latest unreleased version from
GitHub (not recommended in most situations):
ensaio
and xarray
:
+using ensaio
and xarray
:
fname_topo = ensaio.fetch_earth_topography(version=1)
@@ -872,6 +872,11 @@ Normal gravitynormal_gravity
at the given heights and plot it on a
-map with pygmt
:
+map with pygmt
:
diff --git a/dev/py-modindex.html b/dev/py-modindex.html
index 394061cb..12720860 100644
--- a/dev/py-modindex.html
+++ b/dev/py-modindex.html
@@ -413,8 +413,8 @@ Python Module Index
diff --git a/dev/references.html b/dev/references.html
index 84c9839c..f44f3cf6 100644
--- a/dev/references.html
+++ b/dev/references.html
@@ -472,6 +472,9 @@ ReferencesWieczorek2015
Wieczorek, M. A. (2015). Gravity and Topography of the Terrestrial Planets. In Treatise on Geophysics (pp. 153–193). Elsevier. doi:10.1016/b978-0-444-53802-4.00169-x
+- Pec1983
+Pěč, K. & Martinec, Z. (1983). Expansion of geoid heights over a triaxial Earth’s ellipsoid into a spherical harmonic series. Studia Geophysica et Geodaetica, 27, 217-232. doi: 10.1007/BF01592791
+
@@ -504,8 +507,8 @@ References
diff --git a/dev/search.html b/dev/search.html
index 2a5f811a..69144eb1 100644
--- a/dev/search.html
+++ b/dev/search.html
@@ -424,8 +424,8 @@ Search
diff --git a/dev/searchindex.js b/dev/searchindex.js
index 91acce06..380bba71 100644
--- a/dev/searchindex.js
+++ b/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({docnames:["api/generated/boule.Ellipsoid","api/generated/boule.Sphere","api/generated/boule.TriaxialEllipsoid","api/index","changes","citing","compatibility","ellipsoids","glossary","index","install","overview","references","user_guide/coordinates","user_guide/defining_ellipsoids","user_guide/gravity_disturbance","user_guide/normal_gravity","versions"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["api/generated/boule.Ellipsoid.rst","api/generated/boule.Sphere.rst","api/generated/boule.TriaxialEllipsoid.rst","api/index.rst","changes.rst","citing.rst","compatibility.rst","ellipsoids.rst","glossary.rst","index.rst","install.rst","overview.rst","references.rst","user_guide/coordinates.rst","user_guide/defining_ellipsoids.rst","user_guide/gravity_disturbance.rst","user_guide/normal_gravity.rst","versions.rst"],objects:{"":[[3,0,0,"-","boule"]],"boule.Ellipsoid":[[0,2,1,"","eccentricity"],[0,2,1,"","first_eccentricity"],[0,3,1,"","geocentric_radius"],[0,3,1,"","geodetic_to_spherical"],[0,2,1,"","gravity_equator"],[0,2,1,"","gravity_pole"],[0,2,1,"","linear_eccentricity"],[0,2,1,"","mean_radius"],[0,3,1,"","normal_gravity"],[0,3,1,"","prime_vertical_radius"],[0,2,1,"","second_eccentricity"],[0,2,1,"","semiminor_axis"],[0,3,1,"","spherical_to_geodetic"],[0,2,1,"","thirdflattening"],[0,2,1,"","volume"]],"boule.Sphere":[[1,2,1,"","eccentricity"],[1,2,1,"","first_eccentricity"],[1,2,1,"","flattening"],[1,3,1,"","normal_gravitation"],[1,3,1,"","normal_gravity"],[1,2,1,"","semimajor_axis"],[1,2,1,"","semiminor_axis"],[1,2,1,"","thirdflattening"]],"boule.TriaxialEllipsoid":[[2,2,1,"","mean_radius"],[2,2,1,"","volume"]],boule:[[0,1,1,"","Ellipsoid"],[1,1,1,"","Sphere"],[2,1,1,"","TriaxialEllipsoid"]]},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","attribute","Python attribute"],"3":["py","method","Python method"]},objtypes:{"0":"py:module","1":"py:class","2":"py:attribute","3":"py:method"},terms:{"0":[1,6,7,11,12,13,14,15,16,17],"00":1,"000":[11,15,16],"0000":[11,15],"00000000000":[11,15],"000000000000":[11,15],"00032671050958367":[7,11,14],"00169":[7,11,12,14],"002":12,"0033528106647474805":[7,11,14],"003352810681182319":7,"005227617843759314":7,"00842339":0,"00852276":13,"009":[7,11,12],"00999983":13,"01":[4,11],"01293238":13,"01293239":13,"02":[0,11],"02178921":13,"02182043":13,"0273":12,"03":[11,15],"031839221e12":14,"03712615":13,"04":15,"04097894":15,"04long_nam":15,"04xarrai":15,"05":[7,11,14,15,16],"05499056":16,"0591615e":11,"05arrai":[15,16],"05xarrai":16,"06":[4,7,11,14,15],"0652440e":11,"06552908":13,"07":[4,7,11],"08":4,"08181919104281579":11,"08321e":0,"0882181e":7,"09":4,"09090909":13,"0arrai":16,"0f":2,"0long_nam":[11,15],"1":[0,1,2,6,7,11,12,14,15,16,17],"10":[2,4,5,7,11,12,14,15,16],"1000":16,"10000":15,"1007":[7,11,12],"1016":[7,11,12,14],"102":4,"10265843":16,"103":4,"104":4,"106":[7,11,12],"107":4,"108":4,"1081":[11,15],"1081longitud":[11,15],"109":4,"10976692":13,"10_000":16,"10f":0,"11":[0,4,11,14,15],"110":4,"111":4,"112":4,"1126":[2,7,11,12,14],"113":4,"11303663":13,"116":4,"117":4,"118":4,"119":4,"1190":12,"12":[0,11,13],"121":4,"1219381":[2,7,11,12,14],"123":4,"125":4,"126":4,"127":4,"128":4,"129":4,"130":4,"13156991":13,"132":4,"135":13,"136":4,"137":4,"139":4,"13e":0,"14":[11,15],"141":4,"142":4,"144":4,"1443090":12,"14652106":15,"1487109":12,"14963168":13,"14963169":13,"15":[11,15],"153":12,"15864029":15,"15864035":15,"16":[13,15],"160613":16,"162280":16,"162301":16,"162322":16,"162343":16,"162363":16,"162384":16,"162405":16,"162426":16,"162447":16,"162467":16,"16490765":15,"1660":12,"16666666666667":[11,15],"1668":12,"16arrai":15,"17290940000":[7,11,14],"1737151":[7,11],"175000":1,"179":[11,15],"18":[4,15],"180":[11,15],"18181818":13,"1819190842621e":0,"19":4,"193":12,"1948":12,"1980":[7,12],"1984":[0,2,7,11,14],"19862422":13,"1988":12,"1991":12,"1e":[0,2,15],"1e4":15,"1long_nam":[11,15],"2":[0,1,2,6,7,11,13,14,15,16,17],"20":13,"200000":1,"2001":12,"2002":12,"2006":[0,7,11,12,14],"2009":[7,11,12],"2012":[2,7,11,12,14],"2015":[7,11,12,14,15],"2017":12,"2019":[4,12],"2020":4,"2021":[4,11,15],"2022":4,"20698292":16,"2094437949696e":0,"21168079":16,"21286467":13,"2132":12,"2161":[11,15],"21619":15,"22":[4,14],"22031839221000":[7,14],"223200":[7,11,14],"223_200":[2,14],"2336041":[11,15],"23400555":13,"2365589":13,"24":[6,13],"2400172589e":[7,14],"2417638":13,"2439372":[7,14],"25":15,"257223563":[0,14],"25722356300":[11,15],"2613":13,"262700":2,"263566":13,"263685171456948e":11,"2670":11,"26717386":13,"27":4,"27272727":13,"27741906":16,"278600":[7,11,14],"278_600":[2,14],"28":13,"2816814e":11,"286300":[7,11,14],"286_300":[2,14],"28745742":13,"28969268":16,"29":11,"29097894":15,"29211500000e":[11,15],"292115e":[7,11,14],"298":[0,11,14,15],"2_439_372":14,"2a":0,"2f":[0,1,16],"2nd":[0,7,11,12,14],"3":[0,1,2,6,10,11,14,15,16,17],"3142":0,"31424518":13,"31904771":13,"32":[4,13],"32464188":13,"324858592000000":7,"326":[2,14],"33":15,"33509235":[15,16],"33767131":13,"3395428":7,"34":15,"34614029":15,"348":12,"35":[4,15,16],"352810664747480e":[11,15],"3530749":5,"358":12,"359":16,"36":13,"360":16,"361":16,"361east":16,"36363636":13,"37":4,"370":16,"3772279":16,"3986004":[0,14],"398600441800000":[7,11,14],"398600500000000":7,"4":[0,2,6,7,11,12,13,14,15,17],"40":[4,13],"400001":11,"40864029":15,"40916165":13,"41":4,"41053065":13,"418e8":[0,14],"42":4,"426":13,"42800654":13,"42828372000000":7,"44":[13,15],"4400994238":13,"444":[7,11,12,14],"44933126":16,"45":[4,13,16],"451":12,"454":12,"45454545":13,"46635965":15,"48":[4,13],"481000":13,"481_000":13,"4861193":13,"49":[4,13],"4902800070000":[7,11],"4934137":16,"4arrai":11,"4f":0,"5":[1,2,4,11,12,14,15,16],"50":16,"50000":1,"50054635":13,"502384":13,"50383356":16,"50972863":13,"50972864":13,"50th":12,"51":4,"52":4,"521854":0,"5281":[4,5],"53":13,"53802":[7,11,12,14],"53937377":13,"540":[11,15],"54545455":13,"5468191e":15,"55":4,"5575827":4,"5577885":4,"55889092":16,"56":[4,12],"56475052":13,"57":[4,13],"5880":[11,15],"59135965":15,"5964166e":11,"5e":0,"6":[2,4,6,11,12,14,15],"60":4,"6051878":7,"606e":16,"61":[4,13],"62":12,"623447":13,"63":12,"6356752":0,"63636364":13,"6371008":0,"6378137":[0,7,11,14,15],"6466769":13,"65":[4,13],"65273153":13,"65358805":16,"65385965":15,"66":12,"6617073e":[7,11],"666667":[11,15],"67":[4,11,15],"6779998":4,"68":4,"6837752":13,"6837862":13,"6838188":13,"6838725":13,"6839462":13,"6840382":13,"6841466":13,"6842693":13,"6844038":13,"6845471":13,"6846964":13,"6848487":13,"6850007":13,"6851495":13,"6852921":13,"6854255":13,"6855470":13,"6856543":13,"6857451":13,"6858178":13,"6858707":13,"6859029":13,"6859137":13,"69":[4,13],"69566051":16,"6c4":[11,15],"7":[7,10,11,12,14,15,16],"70":4,"71":4,"71050958367e":[2,14],"712":12,"72":4,"720":[11,15],"721":16,"721coordin":16,"723":12,"7258175":4,"72727273":13,"729094e10":[2,14],"7292115e":[0,14],"73":[4,13],"73208506":13,"73423306":16,"74":4,"74573626":2,"7471697":16,"7474860e":15,"75":15,"76":12,"7667904e":15,"76762011":13,"77":[12,13],"770836119":13,"7714":0,"77693773":16,"77885965":15,"7803253359":0,"78032677153605":11,"78263883":13,"78263884":13,"8":[0,11,13,15],"801e":[15,16],"8020189e":15,"802e":15,"80559622":13,"81":13,"81781446":13,"81781447":13,"81818182":13,"82109151":13,"82987947":16,"83":[4,11,15],"8321849379":0,"832186368517242":11,"833333":[11,15],"83509235":15,"83654908":16,"84":[4,15],"85":13,"86":11,"87":4,"88354756":13,"88727812306":13,"89":[4,11,15,16],"89905453":13,"8f":0,"8titl":[11,15],"9":[0,2,4,11,15,16],"90":[1,4,11,13,15,16],"90909091":13,"91":4,"91373991":13,"92":4,"92578056":13,"93173896":16,"9342":[7,11,12],"93808117":16,"94":15,"94596965":16,"96":4,"96423601":16,"9672834":13,"96861652":16,"970":16,"974748":15,"980106":15,"980108":15,"980140":16,"980141":16,"980142":[15,16],"980153":15,"980157":15,"980160":15,"980201":15,"980311":16,"980345":16,"980379":16,"980414":16,"980448":16,"980482":16,"980516":16,"980551":16,"980585":16,"980604":16,"980619":16,"98600441800e":[11,15],"99":4,"99069968":13,"9924e":7,"99381081":13,"999":11,"9999999":15,"break":[4,6,9],"case":[0,1,14],"class":[0,1,2,4,7,9,11,13,14],"default":[0,1],"do":[0,4,15],"final":[11,15],"float":[0,1,2],"function":[0,1,4,6,9,11,15],"import":[8,11,13,14,15,16],"km\u00b3":[0,2],"long":[0,1,2,11,14],"maru\u0161iak":12,"miku\u0161ka":12,"new":[0,4,6,7,9,11,12,14],"return":[0,1,4],"s\u00b2":[0,1,16],"short":[0,1,2,6,11],"true":[0,1,15],"try":9,"while":13,A:[0,1,2,7,9,11,12,14,16],And:16,As:[14,15],Be:11,For:[11,14,15,16],If:[0,2,5,6,7,14],In:[0,6,12],It:[0,1,4,7,16],No:[0,4,12],On:10,One:[8,15,16],Or:16,That:[1,16],The:[0,1,2,6,7,8,10,12,13,14,15,16],There:10,These:[0,1,7,10,16],_:4,_emm:4,_version:4,a45:[11,15],abil:16,about:[0,6,14],abov:[0,1,6,10,15,16],acceler:[0,1,15,16],accelerationdescript:15,access:[11,17],account:0,accur:15,achiev:13,action:4,actual:16,actual_rang:[11,15],ad:[1,4,6,7,8],add:[4,6],adimension:[0,1],af:[11,15,16],after:[0,1,2],against:4,agustina:4,ahead:6,air:[0,15,16],al:[2,7,11,12,14],alia:[0,1],all:[0,1,2,3,4,6,7,11,15],allow:[15,16],alreadi:[0,14],also:[0,9,14,16],alt:13,altern:0,an:[0,2,4,7,8,11,15,16],anaconda:10,analysi:9,analyt:4,angular:[0,1,2,4,14],angular_veloc:[0,1,2,7,11,14],ani:[1,6,13,15,16],annual:12,anomal:15,anomali:[9,12],anoth:13,api:[9,11],app:10,appli:[1,6],applic:[11,13],approxim:[8,15],ar:[0,1,2,3,4,6,7,8,10,11,13,14,15,16],archiv:5,ardalan2009:[7,12],ardalan:[7,11,12],area_thresh:15,aren:13,arithmet:[0,2],around:[0,2,16],arrai:[0,1,11,15,16],arriv:15,ask:9,associ:15,assum:[0,14],assumpt:14,attr:10,attribut:[3,4,7,11,14,15,16],attributes_unit:[11,15],author:4,automat:10,avail:[3,11,12,13,14,15,16],avoid:0,axi:[0,1,2,4,14],azur:4,b978:[7,11,12,14],b:[0,1,2,7,11,12,14],backward:[4,6,9],badg:4,ball:9,bar:4,base:[0,2,4,9,11,13],basemap:[11,15,16],basic:4,becaus:[0,1,13,14,16],been:[2,4,14],befor:[6,9],behav:16,being:4,below:[13,17],best:8,better:[9,16],between:[0,4,6,8,13,14,16],bf02520722:12,bit:16,bl:[11,13,14,15,16],black:4,bodi:[4,8,11,15,16],book:4,bool:[0,1],both:13,bouguer:12,boul:[4,7,10,11,13,14,15,16],bound:[0,2],branch:[4,17],bread:9,bring:9,bug:[4,6],bugfix:6,build:[4,5],built:[11,13,14],bull:12,c:[0,2,7,11,12,14,15],cach:15,calcul:[0,1,2,4,9,11,13,14,15,16],calculat:[11,15],calef:12,came:[0,14],can:[0,1,2,3,6,7,9,10,11,13,14,15,16],cannot:[0,1,2],capabl:11,cartesian:13,caus:6,caveat:14,center:[0,4,13],centrifug:[0,1,4,8,14,15,16],certain:13,cf:[11,15],cfg:4,chain:15,chanc:6,chang:[0,1,2,4,6],changelog:6,channel:[9,10],check:11,checkout:[13,15],choos:14,chri:4,ci:4,citat:[0,1,2,5,9,14],cite:9,classic:16,clearli:[15,16],close:[0,15,16],cmap:[11,15,16],cmd:10,co:[0,1,4,8,11],coast:15,cockett:4,code:[4,6,7],colorbar:[11,15,16],com:10,combin:[1,8,11],come:[10,11,14],command:10,common:[11,13,15],commun:9,compar:16,compat:[1,4,9],compon:[1,16],comput:[0,1,3,4,7,11,15,16],concentr:[1,16],conda:[4,10],condit:[0,16],conf:4,confer:12,configur:4,conserv:6,consid:[5,7],consist:13,constant:[0,1,2,4,8,13,14,15,16],contact:4,contain:4,contin:11,continu:4,contribut:4,convent:[11,15],convers:[0,1,4,9],convert:[0,4,13],coordin:[0,1,4,9,11,12,15,16],copyright:4,coradini:[2,7,11,12,14],corr:[0,7,11,12,14],correct:[0,15,16],correspond:7,corrigendum:12,cr:[11,15],creativ:[11,15],crust_dens:11,current:[1,17],curvatur:0,data:[6,11,15,16],data_nam:16,dataarrai:[11,15,16],dataarraylatitud:15,datafram:16,dataset:16,datasetdimens:16,datum:0,dawn:[2,7,11,12,14],de:[11,15],deal:13,decis:9,defin:[0,1,2,7,11,13],definit:[0,1,2,4,11,14],deg:[11,15],degre:[0,1,11,15],degrees_eastactual_rang:[11,15],degrees_northactual_rang:[11,15],delta:8,demand:11,densiti:[0,1,14,16],depend:[1,4,16],deploy:4,deprec:[4,6],deriv:[0,1,2,3,4,7,11],descript:[11,14,15],design:9,desir:0,detail:11,develop:[10,17],dfrac:[0,1,2],differ:[2,8,10,11,13,14,16],dimens:16,dimension:16,dinneen:4,direct:12,discuss:16,displai:15,distanc:[0,4,13],distinct:14,distribut:[0,4,10,14],disturb:[4,8,9],doc:4,docstr:4,document:[0,1,2,3,4,7,9],doe:[6,16],doi:[2,4,5,7,11,12,14,15],don:[0,1],done:13,doubt:17,download:[11,15],drop:[4,6],dtype:[11,15],due:[4,16],dure:0,e:[0,1,6,7,11,12,15,16],each:[4,10,11],earth:[4,8,9,11,12,15,16],earth_radiu:0,east:16,eccentr:[0,1],ed:[0,7,11,12,14],edit:[0,7,11,12,14],effect:[12,15],effort:5,eigen:[11,15],either:[0,1,13,16],elev:0,ell:13,ellipsoid:[1,2,3,4,8,9,12,13,15],ellipsoidunit:[11,15],elsevi:[7,11,12,14],emm:4,en:0,encount:11,endoscop:12,enhanc:4,ensaio:[11,15],ensur:6,equal:1,equat:[0,4,13,16],equatori:[0,14],equilibrium:[1,15],equipotenti:[1,7,11,12],error:[6,15],et:[2,7,11,12,14],etc:9,evalu:8,even:13,everi:4,ex:10,exact:16,exactli:8,exampl:[0,1,2,4,11,13,14,15],except:[13,16],execut:10,exist:6,experi:9,express:[0,1],extens:4,f:[0,1,2,11,12,13,14,16],f_:1,f_r:1,fact:1,fail:14,fals:[0,1],fatiando:[9,10],featur:[2,4,6,14],feedback:9,fetch_earth_geoid:11,fetch_earth_grav:15,fetch_earth_topographi:11,few:11,field:[9,12],fig:[11,15,16],figur:[11,15,16],file:4,first:[0,1,4,11,15],first_eccentr:[0,1,11],five:2,fix:[4,6],flake8:4,flatrefpot:[11,15],flatten:[0,1,4,7,11,14],float321:15,float32:[11,15],float640:16,float641:16,float649:16,float64:[11,15,16],fname:15,fname_geoid:11,fname_topo:11,foci:0,focu:4,folkner:12,follow:[0,6,14,16],forg:[4,10],form:[0,15,16],format:[4,6],formula:16,found:14,four:0,frac:0,frame:[11,15,16],free:[0,15,16],french:9,from:[0,4,6,7,10,11,12,13,14,15],front:4,full:11,full_lik:16,futurewarn:6,g:[0,1,2,8,16],g_:1,g_r:1,galleri:4,gamma:[0,1,8,11,16],gamma_equ:1,gamma_mar:16,gamma_pol:1,gapvalu:[11,15],gener:[0,1,9,11,12,15,16],generating_d:[11,15],generating_institut:[11,15],gentlecut:[11,15],geocentr:[0,1,2,4,8,12,14,16],geocentric_grav_const:[0,1,2,7,11,14],geocentric_radiu:[0,4],geodesi:[0,7,9,11,12,14,16],geodesiqu:12,geodet:[0,2,4,7,11,12,14,16],geodetic2ecef:13,geodetic2spher:[0,13],geodetic_to_spher:[0,13],geograph:8,geoid:[11,12],geoid_height_above_reference_ellipsoid:11,geoid_height_above_reference_ellipsoiddescript:11,geometr:[0,4,8,9,11,15],geophys:[7,9,11,12,13,14,15,16],get:[2,4,9,14],gfz:[11,15],git:[4,10],github:[4,9,10,17],give:6,given:[0,1,7,8,11],global:[4,9,11,13,15],glossari:4,gm:[0,1,2,8,14],gmrefpot:[11,15],goe:5,golombek:12,gomez:4,googl:4,gotz:12,gradient:[0,1,8,16],grafarend:[7,11,12],gravit:[0,1,2,4,8,14,15],gravitatio:15,graviti:[0,1,2,4,7,8,9,12,13,14],gravity_el:15,gravity_equ:[0,11],gravity_field:[11,15],gravity_pol:[0,11],grdimag:[11,15,16],great:[7,9],grid:[4,8,11,15,16],grid_coordin:16,grid_format:[11,15],grid_mar:16,gridstep:[11,15],grs80:[4,7,11],gt:[11,15,16],guid:4,guidanc:6,h:[0,1,2,7,8,11,12,14,15],ha:[0,4,14],harmon:[0,9,13,15],hausmann:12,have:[0,1,2,4,8,11,14],height:[0,1,11,13,15,16],height_above_reference_ellipsoiddescript:15,height_over_el:15,heightcr:15,heightstandard_nam:[11,15],help:[2,5,9,14],henc:[4,16],here:[9,11,13,14,15,16],highlight:[4,15],hofmann:[0,7,11,12,14],hofmannwellenhofmoritz2006:[0,1,7,8,12,14],homogen:[1,16],how:[4,9,13,14],howev:1,http:[0,4,5,10,11,15],hugo:4,hydrostat:1,i:[6,12,15],icesat:13,icgem:[11,15,16],icgem_metadata:[11,15],idea:9,implement:[1,2,13,14,15,16],imposs:1,improv:[4,9],includ:[4,6,11,14,15,16],incompat:[4,6],inertia:2,inherit:4,input:[0,1,2,14],insight:[12,13],instal:4,instanc:[3,7],instanti:[0,1,2],instead:[0,1,4,13,16],instruct:4,integr:4,interest:[2,14],intern:[0,1,4,11,13,15,16],interpret:15,introduc:6,island:15,isn:7,isostat:15,issu:[4,9],item:4,its:[0,1,4,14],j:12,jcb:[11,15,16],join:9,journal:12,jupyt:4,justifi:5,karcol2017:[12,16],karcol:12,karimi:[7,11,12],keep:9,kei:[0,1,2],kemenad:4,kg:11,km:15,knowledg:7,l:[11,15,16],lajolla:16,lakshmanan1991:[0,12,16],lakshmanan:12,lambda:8,lander:[12,13],lapaz:16,larg:[0,15],largest:[2,14],last:[4,6],lat:13,latest:[5,10,17],latitud:[0,1,4,11,13,15,16],latitude_parallel:[11,15],latitude_sph:13,latitudestandard_nam:[11,15],latitudeunit:[11,15],latitudin:1,latlimit_north:[11,15],latlimit_south:[11,15],layer:[12,16],lead:[4,16],left:1,lemaistr:12,leonardo:4,let:15,li:[4,12],librari:[4,9],licenc:[11,15],licencerefer:[11,15],licens:[4,11,15],ligotze2001:[0,12,16],like:[0,2,8,9,14,15,16],linear:0,linear_eccentr:0,link:[4,17],linspac:[13,16],list:[0,1,2,7,9,11],ll:10,load:15,load_dataarrai:[11,15],local:[12,15],locat:[4,8,11,13],logo:4,lon:13,long_lat_unit:[11,15],long_lat_valu:[11,15],long_nam:[0,1,2,7,11,14,15],longitud:[0,11,13,15,16],longitude_parallel:[11,15],longitude_sph:13,longitudestandard_nam:[11,15],longitudeunit:[11,15],longlimit_east:[11,15],longlimit_west:[11,15],look:[15,16],lt:[11,15,16],lu:4,lunar:[7,12],m:[0,1,2,7,10,11,12,13,14,15,16],ma:[7,11,14],mactual_rang:[11,15],made:[5,6],magnitud:[0,1,8,15,16],mai:[6,11,13,14],main:[4,15,16],mainli:14,maintain:5,mainten:4,major:[0,4,6,14,15],make:[4,6,14],make_xarray_grid:16,makefil:4,mamba:10,manag:10,manipul:[9,11],map:[11,15,16],mar:[4,11,12,13,16],mariana:4,mark:6,markdown:4,marker:4,martian:[7,13,16],mass:[0,1,2,8,15,16],master:4,max_used_degre:[11,15],maxvalu:[11,15],mcsween:[2,7,11,12,14],md:4,mean:[0,2,6,9,11,16],mean_radiu:[0,2],medium:14,mercuri:[4,14],mercurian:7,messag:6,metadata:[0,14],meter:[0,1,11,13],method:[3,4,7,16],mgal:[0,1,11,15,16],mgalactual_rang:15,micrograv:12,middl:[2,14],mind:9,miniconda:10,minimum:6,minor:[6,14],minvalu:[11,15],miss:4,model:[11,12,13,14,15],modelnam:[11,15],modifi:0,modul:[4,9,11],moment:2,month:6,moon:[1,4,11,12,16],more:[4,8,11],moritz1988:[0,12],moritz:[0,7,11,12,14],most:10,mostli:16,move:4,much:[9,16],multi:16,multipl:8,must:[0,1,8,14,16],n:[0,4,12],nabla:[0,1],name:[0,1,2,4,7,11,14],namespac:11,nathu:[2,7,11,12,14],need:[0,7,9,10,11,13,16],nep29:6,newer:[6,9],next:15,ngenerating_d:[11,15],nice:15,non:[14,16],none:[0,1,2],norm:[0,1],normal:[0,1,4,8,9,12,14,15],normal_grav:[0,1,11,15,16],normal_gravit:[1,16],normal_potenti:11,north:16,note:[0,1,6],notic:[4,11,13],now:[4,11,15],np:[13,16],nt0:[11,15],number:[4,11],number_of_gridpoint:[11,15],numer:[0,1,2,14],numpi:[10,13,16],oblat:[0,1,13],observ:[8,15,16],observed_grav:15,obtain:7,ocean:[11,15],off:15,offer:[11,16],often:[8,16],older:[6,10],oldest:[4,10],omega:[0,1,2,14],omegarefpot:[11,15],one:[0,11,13],ones:[6,13],onli:[0,1,2,4,16],open:11,oper:[8,16],option:[0,1,2,4,13,14,15],orbit:13,org:[0,4,5,11,15],organ:4,origin:11,osi:4,other:[0,4,8,11,15],otherwis:0,our:[4,6,9,10,15],out:[4,7,11],outcom:13,overal:16,overview:[4,9],own:[1,13,14],p:12,packag:[4,10,11,15],page:4,panda:16,paradigm:[2,7,11,12,14],paramet:[0,1,2,4,7,9,13,14],parker2019:[12,13],parker:12,part:9,particular:0,particularli:16,pass:0,pdf:12,perform:[3,7,8,9,13,16],pesc:4,phi:[0,1,8],physic:[0,3,7,8,11,12,14],pi:[0,2],pin:6,pip:[4,10],pkg_resourc:4,place:0,placehold:4,planet:[7,11,12,14],planetari:[8,12],plausibl:4,pleas:[2,5,6,7,9,14],plot:[11,15,16],point:[0,1,4,8,15],polar:[0,14,15],pole:[0,13,16],polici:10,port:4,posit:[11,15,16],possibl:[0,14,16],potenti:[0,1,8,14,16],potsdam:[11,15],pp:12,precis:16,present:15,previou:6,prime:[0,1,4],prime_vert:0,prime_vertical_radiu:[0,4],print:[0,1,2,7,11,13,14,16],privat:4,problem:6,process:4,product:[0,1,2],product_typ:[11,15],project:[4,5,7,9,11,15,16],prompt:10,proper:6,properti:[3,4,7,8,11],protoplanetari:[2,7,11,12,14],provid:11,put:16,py:4,pygmt:[11,15,16],pylint:4,pymap3:4,pymap3d:[0,1,4],pypi:4,pyproject:4,python:[4,9],quantiti:[0,4],r:[0,1,2,7,11,12,14],r_1:0,rad:[0,1,2],radial:[0,1,16],radii:14,radiu:[0,1,2,4,7,11,13,14],radiusrefpot:[11,15],rais:6,rang:[14,16],rate:14,ratio:[0,14],raymond:[2,7,11,12,14],re:[2,10,14],reach:7,read:[0,1,2],readm:4,realiz:4,receiv:0,recommend:[6,10],refactor:4,refer:[0,1,2,4,7,8,9,11,14,15],reflect:17,refsysnam:[11,15],region:16,regist:4,releas:[4,6,17],reli:[0,4],remov:[4,6],renam:4,repeat:0,replac:4,repres:[4,8,9,14,16],requir:[0,4,6,7,10,15],research:[5,9],resembl:9,resolut:15,respect:11,right:1,rotat:[0,1,2,14,16],rout:0,rowan:4,run:4,russel:[2,7,11,12,14],russell2012:[7,12,14],s00190:12,s11038:[7,11,12],s:[0,1,2,4,11,12,13,14,15,16],same:[0,8,13,14,15,16],sampl:11,santiago:4,satisfi:[0,16],save:4,scienc:[2,7,11,12,14],scientist:5,scm:4,second:[0,7,11,14],second_eccentr:0,section:4,see:[0,1,3,7,8,10,12,15,16],semant:6,semi:[0,1,2,4,14],semimajor:[0,1,2],semimajor_axi:[0,1,2,7,11,14],semimedium:2,semimedium_axi:[2,7,11,14],semiminor:[0,1,2],semiminor_axi:[0,1,2,7,11,14],separ:[4,16],serv:4,servic:[11,15,16],set:[0,2,6],setup:4,setuptool:4,setuptools_scm:4,sever:[0,2,11],shade:[11,15],shape:9,shell:1,shift:4,shorelin:15,should:10,show:[11,13,15,16],si:[0,1,2,4],si_unit:[0,1],side:4,signal_wrm:[11,15],similar:1,sin:[0,1],sinc:[0,8,14,16],sine:0,singl:[11,16],singular:[0,1],sinlat:0,situat:10,slightli:[13,14],small:0,smaller:16,smallest:[2,14],so:[1,16],softwar:[5,9],sole:16,soler:4,some:[0,1,4,9,13],sometim:9,somigliana:[4,16],sourc:[0,1,2,4,11,15],space:16,special:7,specif:17,specifi:[1,4,14],sphere:[0,4,7,11,13],spheric:[0,1,9,15,16],spherical_latitud:0,spherical_to_geodet:0,spheroid:[4,7,11,14],sphinx:4,spin:[0,2,14],springer:[0,7,11,12,14],sqrt:[0,1],squash:9,standard_nam:11,start:[4,9],statist:4,still:6,store:9,str:[0,1,2],structur:[0,1,16],studi:13,style:4,subduct:15,submit:9,subtract:[8,15],sum:1,support:[4,9,10],sure:11,surfac:[0,1,4,7,11,12,14,16],synthesi:0,system:[0,1,2,7,9,11,12,13,14],t:[0,1,2,6,7,11,12,13,14],take:14,taken:0,target:4,team:7,term:[4,15],termin:10,terra:9,terrestri:[7,11,12,14],test:[2,4,7,11,12,14],than:[0,13,16],thee:2,thei:[0,3,7,8,11,13,16],them:11,theme:4,theori:4,therefor:[1,16],theta:[0,1],thi:[0,1,2,4,5,6,8,9,11,13,14,15,16],thing:[4,16],third:[0,1],thirdflatten:[0,1],thorough:16,those:15,though:13,three:1,tide_fre:[11,15],tide_system:[11,15],time:9,titl:[11,15],toml:4,topographi:[7,11,12,13,14],total:8,touch:[2,14],tradit:9,transform:[3,4,7,12],travi:4,treatis:[7,11,12,14],trend:16,triaxial:[2,7,11],triaxialellipsoid:[4,7,11,14],trigonometr:0,tutori:[4,11,12],two:1,txt:4,type:[11,16],typo:4,u202f:[7,11,14],u:[0,1,8],uieda:4,under:[1,16],underli:[1,16],understand:12,undo:4,unit:[0,1,2,4,11,15],unlik:1,unreleas:10,unspecifi:[0,16],unus:4,updat:[4,9],upgrad:[6,10],us:[0,1,4,5,6,8,10,11,14,15,16,17],user:[4,6,9],usual:[4,11,16],v0:[4,6,17],v2:4,v:[0,1,2,8],valid:[0,1,4],valu:[0,1,2,7,8,16],van:4,vari:[1,13,16],variabl:[11,16],variat:16,vd:16,vec:[0,1,8],vector:[0,1,15],veloc:[0,1,2,4,14],venu:4,venusian:7,verd:16,vermeil:12,vermeille2002:[0,12],version:[9,10,11,15,16],versu:12,vertic:[0,4],vesta:[2,11,12,14],view:11,viridi:[11,15,16],visit:4,volum:[0,2,4],w10c:[11,15,16],w20c:[11,15,16],w:[7,11,12],wa:[4,6],wai:[7,10],want:[13,14],warn:[4,6],we:[0,1,2,6,9,11,13,15,16],weaker:16,weighted_mean:[11,15],welcom:9,well:9,wellenhof:[0,7,11,12,14],were:[6,7,16],wesn:[11,15,16],wgs84:[0,2,4,7,11,13,14,15,16],wgs84cr:11,wgs84sourc:[11,15],what:[11,15,16],when:[1,8,10,11,13,14,16,17],whenev:6,where:[0,1,11,14],which:[0,1,4,14,15,16],why:16,wide:4,wieczorek2015:[7,12,14],wieczorek:[7,11,12,14],wien:[0,7,11,12,14],wiki:0,wikipedia:[0,8],william:12,window:10,without:[6,15,16],won:6,work:[6,9],workflow:[4,13,15],world:[0,2,7,11,14],worth:1,would:[2,14],x27:[11,15],x:[7,11,12,13,14,15,16],xarrai:[11,15,16],xr:[11,15],y:[2,7,11,12,13,14,15,16],yet:[2,7,14],york:[0,7,11,12,14],you:[0,2,5,6,7,9,10,11,13,14],your:[5,13,14],yourself:7,z:13,zenodo:[4,5],zero:[0,1,4,14,16],zero_degree_term:11,zone:15,zuber:[2,7,11,12,14]},titles:["boule.Ellipsoid","boule.Sphere","boule.TriaxialEllipsoid","List of functions and classes (API)","Changelog","Citing Boule","Version compatibility","Available ellipsoids","Glossary","Home","Installing","Overview","References","Coordinate conversions","Defining custom ellipsoids","Gravity disturbances","Normal gravity","Documentation for other versions"],titleterms:{"0":4,"1":4,"2":4,"3":4,"4":4,"class":3,"function":3,The:11,api:3,assumpt:16,attribut:[0,1,2],avail:7,boul:[0,1,2,5,6,9],chang:9,changelog:4,cite:5,compat:6,convers:13,coordin:13,custom:14,defin:14,depend:[6,10],did:16,disturb:15,document:17,earth:7,ellipsoid:[0,7,11,14,16],geocentr:13,geodet:13,glossari:8,gravit:16,graviti:[11,15,16],help:7,instal:10,librari:11,list:3,mar:7,mercuri:7,method:[0,1,2],moon:7,normal:[11,16],notic:16,oblat:[14,16],other:[13,17],overview:11,pymap3d:13,python:[6,10],readi:9,refer:12,sphere:[1,14,16],spheric:13,still:9,support:6,triaxial:14,triaxialellipsoid:2,us:[9,13],venu:7,version:[4,6,17],versu:16,vesta:7,which:10,you:16}})
\ No newline at end of file
+Search.setIndex({docnames:["api/generated/boule.Ellipsoid","api/generated/boule.Sphere","api/generated/boule.TriaxialEllipsoid","api/index","changes","citing","compatibility","ellipsoids","glossary","index","install","overview","references","user_guide/coordinates","user_guide/defining_ellipsoids","user_guide/gravity_disturbance","user_guide/normal_gravity","versions"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["api/generated/boule.Ellipsoid.rst","api/generated/boule.Sphere.rst","api/generated/boule.TriaxialEllipsoid.rst","api/index.rst","changes.rst","citing.rst","compatibility.rst","ellipsoids.rst","glossary.rst","index.rst","install.rst","overview.rst","references.rst","user_guide/coordinates.rst","user_guide/defining_ellipsoids.rst","user_guide/gravity_disturbance.rst","user_guide/normal_gravity.rst","versions.rst"],objects:{"":[[3,0,0,"-","boule"]],"boule.Ellipsoid":[[0,2,1,"","eccentricity"],[0,2,1,"","first_eccentricity"],[0,3,1,"","geocentric_radius"],[0,3,1,"","geodetic_to_spherical"],[0,2,1,"","gravity_equator"],[0,2,1,"","gravity_pole"],[0,2,1,"","linear_eccentricity"],[0,2,1,"","mean_radius"],[0,3,1,"","normal_gravity"],[0,3,1,"","prime_vertical_radius"],[0,2,1,"","second_eccentricity"],[0,2,1,"","semiminor_axis"],[0,3,1,"","spherical_to_geodetic"],[0,2,1,"","thirdflattening"],[0,2,1,"","volume"]],"boule.Sphere":[[1,2,1,"","eccentricity"],[1,2,1,"","first_eccentricity"],[1,2,1,"","flattening"],[1,3,1,"","normal_gravitation"],[1,3,1,"","normal_gravity"],[1,2,1,"","semimajor_axis"],[1,2,1,"","semiminor_axis"],[1,2,1,"","thirdflattening"],[1,2,1,"","volume"]],"boule.TriaxialEllipsoid":[[2,2,1,"","equatorial_flattening"],[2,3,1,"","geocentric_radius"],[2,2,1,"","mean_radius"],[2,2,1,"","meridional_flattening"],[2,2,1,"","volume"]],boule:[[0,1,1,"","Ellipsoid"],[1,1,1,"","Sphere"],[2,1,1,"","TriaxialEllipsoid"]]},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","attribute","Python attribute"],"3":["py","method","Python method"]},objtypes:{"0":"py:module","1":"py:class","2":"py:attribute","3":"py:method"},terms:{"0":[1,2,6,7,11,12,13,14,15,16,17],"00":1,"000":[11,15,16],"0000":[11,15],"00000000000":[11,15],"000000000000":[11,15],"00032671050958367":[7,11,14],"00169":[7,11,12,14],"002":12,"0033528106647474805":[7,11,14],"003352810681182319":7,"005227617843759314":7,"00842339":0,"00852276":13,"009":[7,11,12],"00999983":13,"01":[4,11],"01293238":13,"01293239":13,"02":[0,11],"02178921":13,"02182043":13,"02182044":13,"0273":12,"03":[11,15],"031839221e12":14,"03712615":13,"04":15,"04097894":15,"04long_nam":15,"04xarrai":15,"05":[7,11,14,15,16],"05499056":16,"0591615e":11,"05arrai":[15,16],"05xarrai":16,"06":[4,7,11,14,15],"0652440e":11,"06552908":13,"07":[4,7,11],"08":4,"08181919104281579":11,"08321e":0,"0882181e":7,"09":4,"09090909":13,"0arrai":16,"0f":2,"0long_nam":[11,15],"1":[0,1,2,6,7,11,12,14,15,16,17],"10":[2,4,5,7,11,12,14,15,16],"1000":16,"10000":15,"1007":[7,11,12],"1016":[7,11,12,14],"102":4,"10265843":16,"103":4,"104":4,"106":[7,11,12],"107":4,"108":4,"1081":[11,15],"1081longitud":[11,15],"109":4,"10976692":13,"10_000":16,"10f":[0,1],"11":[0,4,11,14,15],"110":4,"111":4,"112":4,"1126":[2,7,11,12,14],"113":4,"11303663":13,"116":4,"117":4,"118":4,"119":4,"1190":12,"12":[0,11,13],"121":4,"1219381":[2,7,11,12,14],"123":4,"125":4,"126":4,"127":4,"128":4,"129":4,"130":4,"13156991":13,"132":4,"135":13,"136":4,"137":4,"139":4,"13e":0,"14":[11,15],"141":4,"142":4,"144":4,"1443090":12,"14652106":15,"1487109":12,"14963168":13,"14963169":13,"15":[11,15],"153":12,"15864042":15,"16":[13,15],"160613":16,"162280":16,"162301":16,"162322":16,"162343":16,"162363":16,"162384":16,"162405":16,"162426":16,"162447":16,"162467":16,"16490765":15,"1660":12,"16666666666663":[11,15],"16666666666666":[11,15],"16666666666667":[11,15],"1668":12,"16arrai":15,"17290940000":[7,11,14],"1737151":[7,11],"175000":1,"178":[11,15],"179":[11,15],"18":[4,15],"180":[11,15],"18181818":13,"1819190842621e":0,"1887902048":1,"19":4,"193":12,"1948":12,"1980":[7,12],"1983":12,"1984":[0,2,7,11,14],"19862422":13,"1988":12,"1991":12,"1e":[0,2,15],"1e4":15,"1long_nam":[11,15],"2":[0,1,2,6,7,11,13,14,15,16,17],"20":13,"200000":1,"2001":12,"2002":12,"2006":[0,7,11,12,14],"2009":[7,11,12],"2012":[2,7,11,12,14],"2015":[7,11,12,14,15],"2017":12,"2019":[4,12],"2020":4,"2021":[4,11,15],"2022":4,"20698292":16,"2094437949696e":0,"21168081":16,"21286467":13,"2132":12,"2161":[11,15],"21619":15,"217":12,"22":[4,14],"22031839221000":[7,14],"223200":[7,11,14],"223_200":[2,14],"232":12,"2336041":[11,15],"23400555":13,"2365589":13,"24":[6,13],"2400172589e":[7,14],"2417638":13,"2439372":[7,14],"25":15,"257223563":[0,14],"25722356300":[11,15],"2613":13,"262700":2,"263566":13,"263685171456948e":11,"2670":11,"26717386":13,"27":[4,12],"27272727":13,"27741906":16,"278600":[7,11,14],"278_600":[2,14],"28":13,"2816814e":11,"286300":[7,11,14],"286_300":[2,14],"28745742":13,"28969268":16,"29":11,"29097894":15,"29211500000e":[11,15],"292115e":[7,11,14],"298":[0,11,14,15],"2_439_372":14,"2a":0,"2f":[0,1,16],"2nd":[0,7,11,12,14],"3":[0,1,2,6,10,11,14,15,16,17],"3142":0,"31424518":13,"31904771":13,"32":[4,13],"32464188":13,"324858592000000":7,"326":[2,14],"33":15,"33333333333331":[11,15],"33333333333333":[11,15],"33333333333334":[11,15],"33509235":[15,16],"33767131":13,"3395428":7,"34":15,"34614042":15,"348":12,"35":[4,15,16],"352810664747480e":[11,15],"3530749":5,"355":16,"356":16,"357":16,"358":[12,16],"359":16,"36":13,"360":16,"361":16,"361east":16,"36363636":13,"37":4,"370":16,"3772279":16,"3986004":[0,14],"398600441800000":[7,11,14],"398600500000000":7,"4":[0,1,2,6,7,11,12,13,14,15,16,17],"40":[4,13],"400001":11,"40864042":15,"40916165":13,"41":4,"41053065":13,"418e8":[0,14],"42":4,"426":13,"42800654":13,"42828372000000":7,"44":[13,15],"4400994238":13,"444":[7,11,12,14],"44933126":16,"45":[4,13,16],"451":12,"454":12,"45454545":13,"46635958":15,"48":[4,13],"481000":13,"481_000":13,"4861193":13,"49":[4,13],"4902800070000":[7,11],"4934137":16,"4arrai":11,"4f":0,"5":[1,2,4,11,12,14,15,16],"50":16,"50000":1,"50054635":13,"502384":13,"50383356":16,"50972863":13,"50972864":13,"50th":12,"51":4,"52":4,"521854":0,"5281":[4,5],"53":13,"53802":[7,11,12,14],"53937377":13,"540":[11,15],"54545455":13,"5468191e":15,"55":4,"5575827":4,"5577885":4,"55889093":16,"56":[4,12],"56475052":13,"57":[4,13],"5880":[11,15],"59135958":15,"5964166e":11,"5e":0,"6":[2,4,6,11,12,14,15],"60":4,"6051878":7,"606e":16,"61":[4,13],"62":12,"623447":13,"63":12,"6356752":0,"63636364":13,"6371008":0,"6378137":[0,7,11,14,15],"6466769":13,"65":[4,13],"65273153":13,"65358804":16,"65385958":15,"66":12,"6617073e":[7,11],"66666666666663":[11,15],"66666666666666":[11,15],"66666666666667":[11,15],"666667":[11,15],"67":[4,11,15],"6779998":4,"68":4,"6837752":13,"6837862":13,"6838188":13,"6838725":13,"6839462":13,"6840382":13,"6841466":13,"6842693":13,"6844038":13,"6845471":13,"6846964":13,"6848487":13,"6850007":13,"6851495":13,"6852921":13,"6854255":13,"6855470":13,"6856543":13,"6857451":13,"6858178":13,"6858707":13,"6859029":13,"6859137":13,"69":[4,13],"69566051":16,"6c4":[11,15],"7":[7,10,11,12,14,15,16],"70":4,"71":4,"71050958367e":[2,14],"712":12,"72":4,"720":[11,15],"721":16,"721coordin":16,"723":12,"7258175":4,"72727273":13,"729094e10":[2,14],"7292115e":[0,14],"73":[4,13],"73208506":13,"73423306":16,"74":4,"74573626":2,"7471697":16,"7474860e":15,"75":15,"76":12,"7667904e":15,"76762011":13,"77":[12,13],"770836119":13,"7714":0,"77693773":16,"77885958":15,"7803253359":0,"78032677153605":11,"78263883":13,"8":[0,11,13,15],"801e":[15,16],"8020189e":15,"802e":15,"80559622":13,"81":13,"81781446":13,"81781447":13,"81818182":13,"82109151":13,"82987947":16,"83":[4,11,15],"8321849379":0,"832186368517242":11,"833333":[11,15],"83333333333331":[11,15],"83333333333333":[11,15],"83333333333334":[11,15],"83509235":15,"83654908":16,"84":[4,15],"85":[13,16],"86":[11,16],"87":[4,16],"88":[11,15,16],"88354756":13,"887278123":13,"89":[4,11,15,16],"89905453":13,"8f":0,"8titl":[11,15],"9":[0,2,4,11,15,16],"90":[1,4,11,13,15,16],"90909091":13,"91":4,"91373991":13,"92":4,"92578056":13,"93173899":16,"9342":[7,11,12],"93808117":16,"94":15,"94596965":16,"96":4,"96423601":16,"9672834":13,"96861652":16,"970":16,"974748":15,"980106":15,"980108":15,"980140":16,"980141":16,"980142":[15,16],"980153":15,"980157":15,"980160":15,"980201":15,"980311":16,"980345":16,"980379":16,"980414":16,"980448":16,"980482":16,"980516":16,"980551":16,"980585":16,"980604":16,"980619":16,"98600441800e":[11,15],"99":4,"99069968":13,"9924e":7,"99381081":13,"999":11,"9999999":15,"break":[4,6,9],"case":[0,1,14],"class":[0,1,2,4,7,9,11,13,14],"default":[0,1,2],"do":[0,4,15],"final":[11,15],"float":[0,1,2],"function":[0,1,4,6,9,11,15],"import":[8,11,13,14,15,16],"km\u00b3":[0,2],"long":[0,1,2,11,14],"m\u00b3":1,"maru\u0161iak":12,"miku\u0161ka":12,"new":[0,4,6,7,9,11,12,14],"p\u011b\u010d":12,"return":[0,1,2,4],"s\u00b2":[0,1,16],"short":[0,1,2,6,11],"true":[0,1,15],"try":9,"while":[2,13],A:[0,1,2,7,9,11,12,14,16],And:16,As:[14,15],Be:11,For:[11,14,15,16],If:[0,2,5,6,7,14],In:[0,6,12],It:[0,1,4,7,16],No:[0,2,4,12],On:10,One:[8,15,16],Or:16,That:[1,16],The:[0,1,2,6,7,8,10,12,13,14,15,16],There:10,These:[0,1,7,10,16],_:4,_emm:4,_version:4,a45:[11,15],abil:16,about:[0,6,14],abov:[0,1,6,10,15,16],acceler:[0,1,15,16],accelerationdescript:15,access:[11,17],account:[0,2],accur:15,achiev:13,action:4,actual:16,actual_rang:[11,15],ad:[1,4,6,7,8],add:[4,6],adimension:[0,1,2],af:[11,15,16],after:[0,1,2],against:4,agustina:4,ahead:6,air:[0,15,16],al:[2,7,11,12,14],alia:[0,1],all:[0,1,2,3,4,6,7,11,15],allow:[15,16],alreadi:[0,14],also:[0,9,14,16],alt:13,altern:0,an:[0,2,4,7,8,11,15,16],anaconda:10,analysi:9,analyt:4,angular:[0,1,2,4,14],angular_veloc:[0,1,2,7,11,14],ani:[1,6,13,15,16],annual:12,anomal:15,anomali:[9,12],anoth:13,api:[9,11],app:10,appli:[1,6],applic:[11,13],approxim:[8,15],ar:[0,1,2,3,4,6,7,8,10,11,13,14,15,16],archiv:5,ardalan2009:[7,12],ardalan:[7,11,12],area_thresh:15,aren:13,arithmet:[0,2],around:[0,2,16],arrai:[0,1,2,11,15,16],arriv:15,ask:9,associ:15,assum:[0,2,14],assumpt:14,attr:10,attribut:[3,4,7,11,14,15,16],attributes_unit:[11,15],author:4,automat:10,avail:[3,11,12,13,14,15,16],avoid:0,ax:2,axi:[0,1,2,4,14],azur:4,b978:[7,11,12,14],b:[0,1,2,7,11,12,14],backward:[4,6,9],badg:4,ball:9,bar:4,base:[0,2,4,9,11,13],basemap:[11,15,16],basic:4,becaus:[0,1,13,14,16],been:[2,4,14],befor:[6,9],behav:16,being:[2,4],below:[13,17],best:8,better:[9,16],between:[0,4,6,8,13,14,16],bf01592791:12,bf02520722:12,bit:16,bl:[11,13,14,15,16],black:4,bodi:[4,8,11,15,16],book:4,bool:[0,1],both:13,bouguer:12,boul:[4,7,10,11,13,14,15,16],bound:[0,2],branch:[4,17],bread:9,bring:9,bug:[4,6],bugfix:6,build:[4,5],built:[11,13,14],bull:12,c:[0,2,7,11,12,14,15],cach:15,calcul:[0,1,2,4,9,11,13,14,15,16],calculat:[11,15],calef:12,came:[0,14],can:[0,1,2,3,6,7,9,10,11,13,14,15,16],cannot:[0,1,2],capabl:11,cartesian:13,caus:6,caveat:14,center:[0,2,4,13],centrifug:[0,1,4,8,14,15,16],certain:13,cf:[11,15],cfg:4,chain:15,chanc:6,chang:[0,1,2,4,6],changelog:6,channel:[9,10],check:11,checkout:[13,15],choos:14,chri:4,ci:4,citat:[0,1,2,5,9,14],cite:9,classic:16,clearli:[15,16],close:[0,15,16],cmap:[11,15,16],cmd:10,co:[0,1,2,4,8,11],coast:15,cockett:4,code:[4,6,7],colorbar:[11,15,16],com:10,combin:[1,8,11],come:[10,11,14],command:10,common:[11,13,15],commun:9,compar:16,compat:[1,4,9],compon:[1,16],comput:[0,1,2,3,4,7,11,15,16],concentr:[1,16],conda:[4,10],condit:[0,16],conf:4,confer:12,configur:4,conserv:6,consid:[5,7],consist:13,constant:[0,1,2,4,8,13,14,15,16],contact:4,contain:[2,4],contin:11,continu:4,contribut:4,convent:[11,15],convers:[0,1,4,9],convert:[0,4,13],coordin:[0,1,2,4,9,11,12,15,16],copyright:4,coradini:[2,7,11,12,14],corr:[0,7,11,12,14],correct:[0,15,16],correspond:7,corrigendum:12,cr:[11,15],creativ:[11,15],crust_dens:11,current:[1,17],curvatur:0,data:[6,11,15,16],data_nam:16,dataarrai:[11,15,16],dataarraylatitud:15,datafram:16,dataset:16,datasetdimens:16,datum:0,dawn:[2,7,11,12,14],de:[11,15],deal:13,decis:9,defin:[0,1,2,7,11,13],definit:[0,1,2,4,11,14],deg:[11,15],degre:[0,1,2,11,15],degrees_eastactual_rang:[11,15],degrees_northactual_rang:[11,15],delta:8,demand:11,densiti:[0,1,14,16],depend:[1,4,16],deploy:4,deprec:[4,6],deriv:[0,1,2,3,4,7,11],descript:[11,14,15],design:9,desir:0,detail:11,develop:[10,17],dfrac:[0,1,2],differ:[2,8,10,11,13,14,16],dimens:16,dimension:16,dinneen:4,direct:12,discuss:16,displai:15,distanc:[0,2,4,13],distinct:14,distribut:[0,4,10,14],disturb:[4,8,9],doc:4,docstr:4,document:[0,1,2,3,4,7,9],doe:[6,16],doi:[2,4,5,7,11,12,14,15],don:[0,1],done:13,doubt:17,download:[11,15],drop:[4,6],dtype:[11,15,16],due:[4,16],dure:0,e:[0,1,6,7,11,12,15,16],each:[4,10,11],earth:[4,8,9,11,12,15,16],earth_radiu:0,east:16,eastingpandasindexpandasindex:16,eccentr:[0,1],ed:[0,7,11,12,14],edit:[0,7,11,12,14],effect:[12,15],effort:5,eigen:[11,15],either:[0,1,13,16],elev:[0,2],ell:13,ellipsoid:[1,2,3,4,8,9,12,13,15],ellipsoidunit:[11,15],elsevi:[7,11,12,14],emm:4,en:0,encount:11,endoscop:12,enhanc:4,ensaio:[11,15],ensur:6,eq:2,equal:1,equat:[0,4,13,16],equatori:[0,2,14],equatorial_flatten:2,equilibrium:[1,15],equipotenti:[1,7,11,12],error:[6,15],et:[2,7,11,12,14],etc:9,evalu:8,even:13,everi:4,ex:10,exact:16,exactli:8,exampl:[0,1,2,4,11,13,14,15],except:[13,16],execut:10,exist:6,expans:12,experi:9,express:[0,1],extens:4,f:[0,1,2,11,12,13,14,16],f_:1,f_b:2,f_c:2,f_r:1,fact:1,fail:14,fals:[0,1],fatiando:[9,10],featur:[2,4,6,14],feedback:9,fetch_earth_geoid:11,fetch_earth_grav:15,fetch_earth_topographi:11,few:11,field:[9,12],fig:[11,15,16],figur:[11,15,16],file:4,first:[0,1,4,11,15],first_eccentr:[0,1,11],five:2,fix:[4,6],flake8:4,flatrefpot:[11,15],flatten:[0,1,2,4,7,11,14],float321:15,float32:[11,15],float640:16,float641:16,float649:16,float64:[11,15,16],float64index:[11,15,16],fname:15,fname_geoid:11,fname_topo:11,foci:0,focu:4,folkner:12,follow:[0,2,6,14,16],forg:[4,10],form:[0,15,16],format:[4,6],formula:16,found:14,four:0,frac:[0,2],frame:[11,15,16],free:[0,15,16],french:9,from:[0,2,4,6,7,10,11,12,13,14,15],front:4,full:11,full_lik:16,futurewarn:6,g:[0,1,2,8,16],g_:1,g_r:1,galleri:4,gamma:[0,1,8,11,16],gamma_equ:1,gamma_mar:16,gamma_pol:1,gapvalu:[11,15],gener:[0,1,9,11,12,15,16],generating_d:[11,15],generating_institut:[11,15],gentlecut:[11,15],geocentr:[0,1,2,4,8,12,14,16],geocentric_grav_const:[0,1,2,7,11,14],geocentric_radiu:[0,2,4],geodaetica:12,geodesi:[0,7,9,11,12,14,16],geodesiqu:12,geodet:[0,2,4,7,11,12,14,16],geodetic2ecef:13,geodetic2spher:[0,13],geodetic_to_spher:[0,13],geograph:8,geoid:[11,12],geoid_height_above_reference_ellipsoid:11,geoid_height_above_reference_ellipsoiddescript:11,geometr:[0,4,8,9,11,15],geophys:[7,9,11,12,13,14,15,16],geophysica:12,get:[2,4,9,14],gfz:[11,15],git:[4,10],github:[4,9,10,17],give:6,given:[0,1,2,7,8,11],global:[4,9,11,13,15],glossari:4,gm:[0,1,2,8,14],gmrefpot:[11,15],goe:5,golombek:12,gomez:4,googl:4,gotz:12,gradient:[0,1,8,16],grafarend:[7,11,12],gravit:[0,1,2,4,8,14,15],gravitatio:15,graviti:[0,1,2,4,7,8,9,12,13,14],gravity_el:15,gravity_equ:[0,11],gravity_field:[11,15],gravity_pol:[0,11],grdimag:[11,15,16],great:[7,9],grid:[4,8,11,15,16],grid_coordin:16,grid_format:[11,15],grid_mar:16,gridstep:[11,15],grs80:[4,7,11],gt:[11,15,16],guid:4,guidanc:6,h:[0,1,2,7,8,11,12,14,15],ha:[0,4,14],harmon:[0,9,12,13,15],hausmann:12,have:[0,1,2,4,8,11,14],height:[0,1,11,12,13,15,16],height_above_reference_ellipsoiddescript:15,height_over_el:15,heightcr:15,heightstandard_nam:[11,15],help:[2,5,9,14],henc:[4,16],here:[2,9,11,13,14,15,16],highlight:[4,15],hofmann:[0,7,11,12,14],hofmannwellenhofmoritz2006:[0,1,7,8,12,14],homogen:[1,16],how:[4,9,13,14],howev:1,http:[0,4,5,10,11,15],hugo:4,hydrostat:1,i:[6,12,15],icesat:13,icgem:[11,15,16],icgem_metadata:[11,15],idea:9,implement:[1,2,13,14,15,16],imposs:1,improv:[4,9],includ:[4,6,11,14,15,16],incompat:[4,6],index:[11,15,16],inertia:2,inherit:4,input:[0,1,2,14],insight:[12,13],instal:4,instanc:[3,7],instanti:[0,1,2],instead:[0,1,4,13,16],instruct:4,integr:4,interest:[2,14],intern:[0,1,4,11,13,15,16],interpret:15,introduc:6,island:15,isn:7,isostat:15,issu:[4,9],item:4,its:[0,1,2,4,14],j:12,jcb:[11,15,16],join:9,journal:12,jupyt:4,justifi:5,k:12,karcol2017:[12,16],karcol:12,karimi:[7,11,12],keep:9,kei:[0,1,2],kemenad:4,kg:11,km:15,knowledg:7,l:[11,15,16],lajolla:16,lakshmanan1991:[0,12,16],lakshmanan:12,lambda:[2,8],lambda_a:2,lander:[12,13],lapaz:16,larg:[0,15],largest:[2,14],last:[4,6],lat:13,latest:[5,10,17],latitud:[0,1,2,4,11,13,15,16],latitude_parallel:[11,15],latitude_sph:13,latitudepandasindexpandasindex:[11,15],latitudestandard_nam:[11,15],latitudeunit:[11,15],latitudin:1,latlimit_north:[11,15],latlimit_south:[11,15],layer:[12,16],lead:[4,16],left:1,lemaistr:12,length:[11,15,16],leonardo:4,let:15,li:[4,12],librari:[4,9],licenc:[11,15],licencerefer:[11,15],licens:[4,11,15],ligotze2001:[0,12,16],like:[0,2,8,9,14,15,16],linear:0,linear_eccentr:0,link:[4,17],linspac:[13,16],list:[0,1,2,7,9,11],ll:10,load:15,load_dataarrai:[11,15],local:[12,15],locat:[4,8,11,13],logo:4,lon:13,long_lat_unit:[11,15],long_lat_valu:[11,15],long_nam:[0,1,2,7,11,14,15],longitud:[0,2,11,13,15,16],longitude_parallel:[11,15],longitude_semimajor_axi:2,longitude_sph:13,longitudepandasindexpandasindex:[11,15],longitudestandard_nam:[11,15],longitudeunit:[11,15],longlimit_east:[11,15],longlimit_west:[11,15],look:[15,16],lt:[11,15,16],lu:4,lunar:[7,12],m:[0,1,2,7,10,11,12,13,14,15,16],ma:[7,11,14],mactual_rang:[11,15],made:[5,6],magnitud:[0,1,8,15,16],mai:[6,11,13,14],main:[4,15,16],mainli:14,maintain:5,mainten:4,major:[0,2,4,6,14,15],make:[4,6,14],make_xarray_grid:16,makefil:4,mamba:10,manag:10,manipul:[9,11],map:[11,15,16],mar:[4,11,12,13,16],mariana:4,mark:6,markdown:4,marker:4,martian:[7,13,16],martinec:12,mass:[0,1,2,8,15,16],master:4,max_used_degre:[11,15],maxvalu:[11,15],mcsween:[2,7,11,12,14],md:4,mean:[0,2,6,9,11,16],mean_radiu:[0,2],medium:[2,14],mercuri:[4,14],mercurian:7,meridian:2,meridion:2,meridional_flatten:2,messag:6,metadata:[0,14],meter:[0,1,11,13],method:[3,4,7,16],mgal:[0,1,11,15,16],mgalactual_rang:15,micrograv:12,middl:[2,14],mind:9,miniconda:10,minimum:6,minor:[2,6,14],minvalu:[11,15],miss:4,model:[11,12,13,14,15],modelnam:[11,15],modifi:0,modul:[4,9,11],moment:2,month:6,moon:[1,4,11,12,16],more:[4,8,11],moritz1988:[0,12],moritz:[0,7,11,12,14],most:10,mostli:16,move:4,much:[9,16],multi:16,multipl:8,must:[0,1,8,14,16],n:[0,4,12],nabla:[0,1],name:[0,1,2,4,7,11,14,15,16],namespac:11,nathu:[2,7,11,12,14],need:[0,7,9,10,11,13,16],nep29:6,newer:[6,9],next:15,ngenerating_d:[11,15],nice:15,non:[14,16],none:[0,1,2],norm:[0,1],normal:[0,1,4,8,9,12,14,15],normal_grav:[0,1,11,15,16],normal_gravit:[1,16],normal_potenti:11,north:16,northingpandasindexpandasindex:16,note:[0,1,2,6],notic:[4,11,13],now:[4,11,15],np:[13,16],nt0:[11,15],number:[4,11],number_of_gridpoint:[11,15],numer:[0,1,2,14],numpi:[10,13,16],oblat:[0,1,13],observ:[8,15,16],observed_grav:15,obtain:7,ocean:[11,15],off:15,offer:[11,16],often:[8,16],older:[6,10],oldest:[4,10],omega:[0,1,2,14],omegarefpot:[11,15],one:[0,11,13],ones:[6,13],onli:[0,1,2,4,16],open:11,oper:[8,16],option:[0,1,2,4,13,14,15],orbit:13,org:[0,4,5,11,15],organ:4,origin:11,osi:4,other:[0,4,8,11,15],otherwis:0,our:[4,6,9,10,15],out:[4,7,11],outcom:13,over:12,overal:16,overview:[4,9],own:[1,13,14],p:12,packag:[4,10,11,15],page:4,panda:16,paradigm:[2,7,11,12,14],paramet:[0,1,2,4,7,9,13,14],parker2019:[12,13],parker:12,part:9,particular:0,particularli:16,pass:0,pdf:12,pec1983:[2,12],perform:[3,7,8,9,13,16],pesc:4,phi:[0,1,2,8],physic:[0,3,7,8,11,12,14],pi:[0,1,2],pin:6,pip:[4,10],pkg_resourc:4,place:0,placehold:4,plane:2,planet:[7,11,12,14],planetari:[8,12],plausibl:4,pleas:[2,5,6,7,9,14],plot:[11,15,16],point:[0,1,4,8,15],polar:[0,14,15],pole:[0,13,16],polici:10,port:4,posit:[11,15,16],possibl:[0,14,16],potenti:[0,1,8,14,16],potsdam:[11,15],pp:12,precis:16,present:15,previou:6,prime:[0,1,4],prime_vert:0,prime_vertical_radiu:[0,4],print:[0,1,2,7,11,13,14,16],privat:4,problem:6,process:4,product:[0,1,2],product_typ:[11,15],project:[4,5,7,9,11,15,16],prompt:10,proper:6,properti:[3,4,7,8,11],protoplanetari:[2,7,11,12,14],provid:11,put:16,py:4,pygmt:[11,15,16],pylint:4,pymap3:4,pymap3d:[0,1,4],pypi:4,pyproject:4,python:[4,9],quantiti:[0,4],r:[0,1,2,7,11,12,14],r_1:0,rad:[0,1,2],radial:[0,1,2,16],radii:14,radiu:[0,1,2,4,7,11,13,14],radiusrefpot:[11,15],rais:6,rang:[14,16],rate:14,ratio:[0,14],raymond:[2,7,11,12,14],re:[2,10,14],reach:7,read:[0,1,2],readm:4,realiz:4,receiv:0,recommend:[6,10],refactor:4,refer:[0,1,2,4,7,8,9,11,14,15],reflect:17,refsysnam:[11,15],region:16,regist:4,releas:[4,6,17],reli:[0,4],remov:[4,6],renam:4,repeat:0,replac:4,repres:[4,8,9,14,16],requir:[0,4,6,7,10,15],research:[5,9],resembl:9,resolut:15,respect:11,right:1,rotat:[0,1,2,14,16],rout:0,rowan:4,run:4,russel:[2,7,11,12,14],russell2012:[7,12,14],s00190:12,s11038:[7,11,12],s:[0,1,2,4,11,12,13,14,15,16],same:[0,2,8,13,14,15,16],sampl:11,santiago:4,satisfi:[0,16],save:4,scienc:[2,7,11,12,14],scientist:5,scm:4,second:[0,7,11,14],second_eccentr:0,section:4,see:[0,1,2,3,7,8,10,12,15,16],semant:6,semi:[0,1,2,4,14],semimajor:[0,1,2],semimajor_axi:[0,1,2,7,11,14],semimedium:2,semimedium_axi:[2,7,11,14],semiminor:[0,1,2],semiminor_axi:[0,1,2,7,11,14],separ:[4,16],seri:12,serv:4,servic:[11,15,16],set:[0,2,6],setup:4,setuptool:4,setuptools_scm:4,sever:[0,2,11],shade:[11,15],shape:9,shell:1,shift:4,shorelin:15,should:10,show:[11,13,15,16],si:[0,1,2,4],si_unit:[0,1],side:4,signal_wrm:[11,15],similar:1,sin:[0,1,2],sinc:[0,8,14,16],sine:0,singl:[11,16],singular:[0,1],sinlat:0,situat:10,slightli:[13,14],small:0,smaller:16,smallest:[2,14],so:[1,16],softwar:[5,9],sole:16,soler:4,some:[0,1,4,9,13],sometim:9,somigliana:[4,16],sourc:[0,1,2,4,11,15],space:16,special:7,specif:17,specifi:[1,4,14],sphere:[0,4,7,11,13],spheric:[0,1,2,9,12,15,16],spherical_latitud:0,spherical_to_geodet:0,spheroid:[4,7,11,14],sphinx:4,spin:[0,2,14],springer:[0,7,11,12,14],sqrt:[0,1,2],squash:9,standard_nam:11,start:[4,9],statist:4,still:6,store:9,str:[0,1,2],structur:[0,1,16],studi:13,studia:12,style:4,subduct:15,submit:9,subtract:[8,15],sum:1,support:[4,9,10],sure:11,surfac:[0,1,2,4,7,11,12,14,16],synthesi:0,system:[0,1,2,7,9,11,12,13,14],t:[0,1,2,6,7,11,12,13,14],take:14,taken:[0,2],target:4,team:7,term:[4,15],termin:10,terra:9,terrestri:[7,11,12,14],test:[2,4,7,11,12,14],than:[0,13,16],thee:2,thei:[0,3,7,8,11,13,16],them:11,theme:4,theori:4,therefor:[1,16],theta:[0,1],thi:[0,1,2,4,5,6,8,9,11,13,14,15,16],thing:[4,16],third:[0,1],thirdflatten:[0,1],thorough:16,those:15,though:13,three:1,tide_fre:[11,15],tide_system:[11,15],time:9,titl:[11,15],toml:4,topographi:[7,11,12,13,14],total:8,touch:[2,14],tradit:9,transform:[3,4,7,12],travi:4,treatis:[7,11,12,14],trend:16,triaxial:[2,7,11,12],triaxialellipsoid:[4,7,11,14],trigonometr:0,tutori:[4,11,12],two:1,txt:4,type:[11,16],typo:4,u202f:[7,11,14],u:[0,1,8],uieda:4,under:[1,16],underli:[1,16],understand:12,undo:4,unit:[0,1,2,4,11,15],unlik:1,unreleas:10,unspecifi:[0,16],unus:4,updat:[4,9],upgrad:[6,10],us:[0,1,2,4,5,6,8,10,11,14,15,16,17],user:[4,6,9],usual:[4,11,16],v0:[4,6,17],v2:4,v:[0,1,2,8],valid:[0,1,4],valu:[0,1,2,7,8,16],van:4,vari:[1,13,16],variabl:[11,16],variat:16,vd:16,vec:[0,1,8],vector:[0,1,15],veloc:[0,1,2,4,14],venu:4,venusian:7,verd:16,vermeil:12,vermeille2002:[0,12],version:[9,10,11,15,16],versu:12,vertic:[0,4],vesta:[2,11,12,14],view:11,viridi:[11,15,16],visit:4,volum:[0,1,2,4],w10c:[11,15,16],w20c:[11,15,16],w:[7,11,12],wa:[4,6],wai:[7,10],want:[13,14],warn:[4,6],we:[0,1,2,6,9,11,13,15,16],weaker:16,weighted_mean:[11,15],welcom:9,well:9,wellenhof:[0,7,11,12,14],were:[6,7,16],wesn:[11,15,16],wgs84:[0,2,4,7,11,13,14,15,16],wgs84cr:11,wgs84sourc:[11,15],what:[11,15,16],when:[1,8,10,11,13,14,16,17],whenev:6,where:[0,1,2,11,14],which:[0,1,4,14,15,16],why:16,wide:4,wieczorek2015:[7,12,14],wieczorek:[7,11,12,14],wien:[0,7,11,12,14],wiki:0,wikipedia:[0,8],william:12,window:10,without:[6,15,16],won:6,work:[6,9],workflow:[4,13,15],world:[0,2,7,11,14],worth:1,would:[2,14],x27:[11,15,16],x:[7,11,12,13,14,15,16],xarrai:[11,15,16],xr:[11,15],y:[2,7,11,12,13,14,15,16],yet:[2,7,14],york:[0,7,11,12,14],you:[0,2,5,6,7,9,10,11,13,14],your:[5,13,14],yourself:7,z:[12,13],zenodo:[4,5],zero:[0,1,4,14,16],zero_degree_term:11,zone:15,zuber:[2,7,11,12,14]},titles:["boule.Ellipsoid","boule.Sphere","boule.TriaxialEllipsoid","List of functions and classes (API)","Changelog","Citing Boule","Version compatibility","Available ellipsoids","Glossary","Home","Installing","Overview","References","Coordinate conversions","Defining custom ellipsoids","Gravity disturbances","Normal gravity","Documentation for other versions"],titleterms:{"0":4,"1":4,"2":4,"3":4,"4":4,"class":3,"function":3,The:11,api:3,assumpt:16,attribut:[0,1,2],avail:7,boul:[0,1,2,5,6,9],chang:9,changelog:4,cite:5,compat:6,convers:13,coordin:13,custom:14,defin:14,depend:[6,10],did:16,disturb:15,document:17,earth:7,ellipsoid:[0,7,11,14,16],geocentr:13,geodet:13,glossari:8,gravit:16,graviti:[11,15,16],help:7,instal:10,librari:11,list:3,mar:7,mercuri:7,method:[0,1,2],moon:7,normal:[11,16],notic:16,oblat:[14,16],other:[13,17],overview:11,pymap3d:13,python:[6,10],readi:9,refer:12,sphere:[1,14,16],spheric:13,still:9,support:6,triaxial:14,triaxialellipsoid:2,us:[9,13],venu:7,version:[4,6,17],versu:16,vesta:7,which:10,you:16}})
\ No newline at end of file
diff --git a/dev/user_guide/coordinates.html b/dev/user_guide/coordinates.html
index eda06dc2..06a7c314 100644
--- a/dev/user_guide/coordinates.html
+++ b/dev/user_guide/coordinates.html
@@ -544,10 +544,10 @@ Geodetic to geocentric spherical
X = -2417638.770836119 m
Y = 2365589.4400994238 m
-Z = 263566.88727812306 m
+Z = 263566.887278123 m
@@ -701,8 +701,8 @@ Other conversions using pymap3d
diff --git a/dev/user_guide/defining_ellipsoids.html b/dev/user_guide/defining_ellipsoids.html
index 947e33db..a56e5633 100644
--- a/dev/user_guide/defining_ellipsoids.html
+++ b/dev/user_guide/defining_ellipsoids.html
@@ -715,8 +715,8 @@ Contents
diff --git a/dev/user_guide/gravity_disturbance.html b/dev/user_guide/gravity_disturbance.html
index d56a44fe..88d75c4c 100644
--- a/dev/user_guide/gravity_disturbance.html
+++ b/dev/user_guide/gravity_disturbance.html
@@ -463,8 +463,8 @@ Gravity disturbances
Next, we can download and cache the gravity grid using ensaio
and load
-it with xarray
:
Next, we can download and cache the gravity grid using ensaio
and load
+it with xarray
:
fname = ensaio.fetch_earth_gravity(version=1)
@@ -735,6 +735,11 @@ Gravity disturbances
grid-column: 4;
}
+.xr-index-preview {
+ grid-column: 2 / 5;
+ color: var(--xr-font-color2);
+}
+
.xr-var-name,
.xr-var-dims,
.xr-var-dtype,
@@ -756,14 +761,16 @@ Gravity disturbances
}
.xr-var-attrs,
-.xr-var-data {
+.xr-var-data,
+.xr-index-data {
display: none;
background-color: var(--xr-background-color) !important;
padding-bottom: 5px !important;
}
.xr-var-attrs-in:checked ~ .xr-var-attrs,
-.xr-var-data-in:checked ~ .xr-var-data {
+.xr-var-data-in:checked ~ .xr-var-data,
+.xr-index-data-in:checked ~ .xr-index-data {
display: block;
}
@@ -773,13 +780,16 @@ Gravity disturbances
.xr-var-name span,
.xr-var-data,
+.xr-index-name div,
+.xr-index-data,
.xr-attrs {
padding-left: 25px !important;
}
.xr-attrs,
.xr-var-attrs,
-.xr-var-data {
+.xr-var-data,
+.xr-index-data {
grid-column: 1 / -1;
}
@@ -817,7 +827,8 @@ Gravity disturbances
}
.xr-icon-database,
-.xr-icon-file-text2 {
+.xr-icon-file-text2,
+.xr-no-icon {
display: inline-block;
vertical-align: middle;
width: 1em;
@@ -855,7 +866,7 @@ Gravity disturbances
description: magnitude of the gravity acceleration vector (gravitatio...
units: mGal
actual_range: [974748.6 980201.9]
- icgem_metadata: generating_institute: gfz-potsdam\ngenerating_date: 2021...
Let’s plot this data on a map using pygmt
to see what it looks like:
Let’s plot this data on a map using pygmt
to see what it looks like:
fig = pygmt.Figure()
@@ -1207,6 +1236,11 @@ Gravity disturbances
grid-column: 4;
}
+.xr-index-preview {
+ grid-column: 2 / 5;
+ color: var(--xr-font-color2);
+}
+
.xr-var-name,
.xr-var-dims,
.xr-var-dtype,
@@ -1228,14 +1262,16 @@ Gravity disturbances
}
.xr-var-attrs,
-.xr-var-data {
+.xr-var-data,
+.xr-index-data {
display: none;
background-color: var(--xr-background-color) !important;
padding-bottom: 5px !important;
}
.xr-var-attrs-in:checked ~ .xr-var-attrs,
-.xr-var-data-in:checked ~ .xr-var-data {
+.xr-var-data-in:checked ~ .xr-var-data,
+.xr-index-data-in:checked ~ .xr-index-data {
display: block;
}
@@ -1245,13 +1281,16 @@ Gravity disturbances
.xr-var-name span,
.xr-var-data,
+.xr-index-name div,
+.xr-index-data,
.xr-attrs {
padding-left: 25px !important;
}
.xr-attrs,
.xr-var-attrs,
-.xr-var-data {
+.xr-var-data,
+.xr-index-data {
grid-column: 1 / -1;
}
@@ -1289,7 +1328,8 @@ Gravity disturbances
}
.xr-icon-database,
-.xr-icon-file-text2 {
+.xr-icon-file-text2,
+.xr-no-icon {
display: inline-block;
vertical-align: middle;
width: 1em;
@@ -1303,11 +1343,11 @@ Gravity disturbances
980142.33509235, 980142.33509235, 980142.33509235],
[980142.29097894, 980142.29097894, 980142.29097894, ...,
980142.29097894, 980142.29097894, 980142.29097894],
- [980142.15864029, 980142.15864029, 980142.15864029, ...,
- 980142.15864029, 980142.15864029, 980142.15864029],
+ [980142.15864042, 980142.15864042, 980142.15864042, ...,
+ 980142.15864042, 980142.15864042, 980142.15864042],
...,
- [980142.15864035, 980142.15864035, 980142.15864035, ...,
- 980142.15864035, 980142.15864035, 980142.15864035],
+ [980142.15864042, 980142.15864042, 980142.15864042, ...,
+ 980142.15864042, 980142.15864042, 980142.15864042],
[980142.29097894, 980142.29097894, 980142.29097894, ...,
980142.29097894, 980142.29097894, 980142.29097894],
[980142.33509235, 980142.33509235, 980142.33509235, ...,
@@ -1315,28 +1355,46 @@ Gravity disturbances
Coordinates:
* latitude (latitude) float64 -90.0 -89.83 -89.67 -89.5 ... 89.67 89.83 90.0
* longitude (longitude) float64 -180.0 -179.8 -179.7 ... 179.7 179.8 180.0
- height (latitude, longitude) float32 1e+04 1e+04 1e+04 ... 1e+04 1e+04
+ dtype=float32)PandasIndex(Float64Index([ -90.0, -89.83333333333333, -89.66666666666667, + -89.5, -89.33333333333333, -89.16666666666667, + -89.0, -88.83333333333333, -88.66666666666667, + -88.5, + ... + 88.5, 88.66666666666666, 88.83333333333331, + 89.0, 89.16666666666666, 89.33333333333331, + 89.5, 89.66666666666666, 89.83333333333331, + 90.0], + dtype='float64', name='latitude', length=1081))
PandasIndex(Float64Index([ -180.0, -179.83333333333334, -179.66666666666666, + -179.5, -179.33333333333334, -179.16666666666666, + -179.0, -178.83333333333334, -178.66666666666666, + -178.5, + ... + 178.5, 178.66666666666663, 178.83333333333331, + 179.0, 179.16666666666663, 179.33333333333331, + 179.5, 179.66666666666663, 179.83333333333331, + 180.0], + dtype='float64', name='longitude', length=2161))
PandasIndex(Float64Index([ -180.0, -179.83333333333334, -179.66666666666666, + -179.5, -179.33333333333334, -179.16666666666666, + -179.0, -178.83333333333334, -178.66666666666666, + -178.5, + ... + 178.5, 178.66666666666663, 178.83333333333331, + 179.0, 179.16666666666663, 179.33333333333331, + 179.5, 179.66666666666663, 179.83333333333331, + 180.0], + dtype='float64', name='longitude', length=2161))
PandasIndex(Float64Index([ -90.0, -89.83333333333333, -89.66666666666667, + -89.5, -89.33333333333333, -89.16666666666667, + -89.0, -88.83333333333333, -88.66666666666667, + -88.5, + ... + 88.5, 88.66666666666666, 88.83333333333331, + 89.0, 89.16666666666666, 89.33333333333331, + 89.5, 89.66666666666666, 89.83333333333331, + 90.0], + dtype='float64', name='latitude', length=1081))
Finally, we can display the disturbance in a nice global map:
[980619.77693773 980585.4934137 980551.21168079 980516.93173896
- 980482.65358805 980448.3772279 980414.10265843 980379.82987947
- 980345.55889092 980311.28969268]
+[980619.77693773 980585.4934137 980551.21168081 980516.93173899
+ 980482.65358804 980448.3772279 980414.10265843 980379.82987947
+ 980345.55889093 980311.28969268]
The arrays can be multi-dimensional so we can use verde
to generate a
+
The arrays can be multi-dimensional so we can use verde
to generate a
grid of normal gravity:
xarray.Dataset
:
+Which can be put in a xarray.Dataset
: