-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDQN_STOCK.py
439 lines (365 loc) · 16 KB
/
DQN_STOCK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
import numpy as np
import sys
import codecs
import paddle.fluid as fluid
import parl
from parl import layers
from parl.utils import logger
import random
import json
import gym
from gym import spaces
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
LEARN_FREQ = 5 # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率
MEMORY_SIZE = 20000 # replay memory的大小,越大越占用内存
MEMORY_WARMUP_SIZE = 200 # replay_memory 里需要预存一些经验数据,再从里面sample一个batch的经验让agent去learn
BATCH_SIZE = 32 # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等
######################################################################
######################################################################
#
# 1. 请设定 learning rate,可以从 0.001 起调,尝试增减
#
######################################################################
######################################################################
LEARNING_RATE = 4e-1 # 学习率
class Model(parl.Model):
def __init__(self, act_dim):
######################################################################
######################################################################
#
# 2. 请参考课堂Demo,配置model
#
hid1_size = 128
hid2_size = 128
# 3层全连接网络
self.fc1 = layers.fc(size=hid1_size, act='relu')
self.fc2 = layers.fc(size=hid2_size, act='relu')
self.fc3 = layers.fc(size=act_dim, act=None)
######################################################################
######################################################################
def value(self, obs):
# 定义网络
# 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2), Q(s,a3)...]
######################################################################
######################################################################
#
# 3. 请参考课堂Demo,组装Q网络
h1 = self.fc1(obs)
h2 = self.fc2(h1)
Q = self.fc3(h2)
#
######################################################################
######################################################################
return Q
from parl.algorithms import DQN
class Agent(parl.Agent):
def __init__(self,
algorithm,
obs_dim,
act_dim,
e_greed=0.1,
e_greed_decrement=0):
assert isinstance(obs_dim, int)
assert isinstance(act_dim, int)
self.obs_dim = obs_dim
self.act_dim = act_dim
super(Agent, self).__init__(algorithm)
self.global_step = 0
self.update_target_steps = 200 # 每隔200个training steps再把model的参数复制到target_model中
self.e_greed = e_greed # 有一定概率随机选取动作,探索
self.e_greed_decrement = e_greed_decrement # 随着训练逐步收敛,探索的程度慢慢降低
def build_program(self):
self.pred_program = fluid.Program()
self.learn_program = fluid.Program()
with fluid.program_guard(self.pred_program): # 搭建计算图用于 预测动作,定义输入输出变量
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
self.value = self.alg.predict(obs)
with fluid.program_guard(self.learn_program): # 搭建计算图用于 更新Q网络,定义输入输出变量
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
action = layers.data(name='act', shape=[1], dtype='int32')
reward = layers.data(name='reward', shape=[], dtype='float32')
next_obs = layers.data(
name='next_obs', shape=[self.obs_dim], dtype='float32')
terminal = layers.data(name='terminal', shape=[], dtype='bool')
self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)
def sample(self, obs):
sample = np.random.rand() # 产生0~1之间的小数
if sample < self.e_greed:
act = np.random.randint(self.act_dim) # 探索:每个动作都有概率被选择
else:
act = self.predict(obs) # 选择最优动作
self.e_greed = max(
0.01, self.e_greed - self.e_greed_decrement) # 随着训练逐步收敛,探索的程度慢慢降低
return act
def predict(self, obs): # 选择最优动作
obs = np.expand_dims(obs, axis=0)
pred_Q = self.fluid_executor.run(
self.pred_program,
feed={'obs': obs.astype('float32')},
fetch_list=[self.value])[0]
pred_Q = np.squeeze(pred_Q, axis=0)
act = np.argmax(pred_Q) # 选择Q最大的下标,即对应的动作
return act
def learn(self, obs, act, reward, next_obs, terminal):
# 每隔200个training steps同步一次model和target_model的参数
if self.global_step % self.update_target_steps == 0:
self.alg.sync_target()
self.global_step += 1
act = np.expand_dims(act, 1)
feed = {
'obs': obs.astype('float32'),
'act': act.astype('int32'),
'reward': reward,
'next_obs': next_obs.astype('float32'),
'terminal': terminal
}
cost = self.fluid_executor.run(
self.learn_program, feed=feed, fetch_list=[self.cost])[0] # 训练一次网络
return cost
import math
import numpy as np
import gym
from gym import spaces
from gym.utils import seeding
MAX_ACCOUNT_BALANCE = 214748
MAX_NUM_SHARES = 214748
MAX_SHARE_PRICE = 5000
MAX_VOLUME = 1000e6
MAX_AMOUNT = 3e5
MAX_OPEN_POSITIONS = 5
MAX_STEPS = 500
MAX_DAY_CHANGE = 1
max_loss =-50000
INITIAL_ACCOUNT_BALANCE = 10000
class StockTradingEnv(gym.Env):
"""A stock trading environment for OpenAI gym"""
metadata = {'render.modes': ['human']}
def __init__(self, df):
super(StockTradingEnv, self).__init__()
self.df = df
self.reward_range = (0, MAX_ACCOUNT_BALANCE)
# Actions of the format Buy x%, Sell x%, Hold, etc.
self.action_space = spaces.Box(
low=0, high=1,shape=(3,), dtype=np.float32)
# Prices contains the OHCL values for the last five prices
self.observation_space = spaces.Box(
low=0, high=1, shape=(19,), dtype=np.float32)
def _next_observation(self):
obs = np.array([
self.df.loc[self.current_step, 'open'] / MAX_SHARE_PRICE,
self.df.loc[self.current_step, 'high'] / MAX_SHARE_PRICE,
self.df.loc[self.current_step, 'low'] / MAX_SHARE_PRICE,
self.df.loc[self.current_step, 'close'] / MAX_SHARE_PRICE,
self.df.loc[self.current_step, 'volume'] / MAX_VOLUME,
self.df.loc[self.current_step, 'amount'] / MAX_AMOUNT,
self.df.loc[self.current_step, 'adjustflag'] / 10,
self.df.loc[self.current_step, 'tradestatus'] / 1,
self.df.loc[self.current_step, 'pctChg'] / 100,
self.df.loc[self.current_step, 'peTTM'] / 1e4,
self.df.loc[self.current_step, 'pbMRQ'] / 100,
self.df.loc[self.current_step, 'psTTM'] / 100,
self.df.loc[self.current_step, 'pctChg'] / 1e3,
self.balance / MAX_ACCOUNT_BALANCE,
self.max_net_worth / MAX_ACCOUNT_BALANCE,
self.shares_held / MAX_NUM_SHARES,
self.cost_basis / MAX_SHARE_PRICE,
self.total_shares_sold / MAX_NUM_SHARES,
self.total_sales_value / (MAX_NUM_SHARES * MAX_SHARE_PRICE),
])
return obs
def _take_action(self, action):
# Set the current price to a random price within the time step
current_price = random.uniform(
self.df.loc[self.current_step, "open"], self.df.loc[self.current_step, "close"])
action_type = action
amount = action
if action_type < 1:
# Buy amount % of balance in shares
total_possible = int(self.balance / current_price)
shares_bought = int(total_possible * amount)
prev_cost = self.cost_basis * self.shares_held
additional_cost = shares_bought * current_price
self.balance -= additional_cost
self.cost_basis = (
prev_cost + additional_cost) / (self.shares_held + shares_bought)
self.shares_held += shares_bought
elif action_type < 2:
# Sell amount % of shares held
shares_sold = int(self.shares_held * amount)
self.balance += shares_sold * current_price
self.shares_held -= shares_sold
self.total_shares_sold += shares_sold
self.total_sales_value += shares_sold * current_price
self.net_worth = self.balance + self.shares_held * current_price
if self.net_worth > self.max_net_worth:
self.max_net_worth = self.net_worth
if self.shares_held == 0:
self.cost_basis = 0
def step(self, action):
# Execute one time step within the environment
self._take_action(action)
done = False
self.current_step += 1
if self.current_step > len(self.df.loc[:, 'open'].values) - 1:
self.current_step = 0 # loop training
done = True
delay_modifier = (self.current_step / MAX_STEPS)
# profits
reward = self.net_worth - INITIAL_ACCOUNT_BALANCE
reward = 1 if reward > 0 else -100
if self.net_worth <= 0 :
done = True
if reward <= max_loss :
done = True
obs = self._next_observation()
return obs, reward, done, {}
def reset(self, new_df=None):
# Reset the state of the environment to an initial state
self.balance = INITIAL_ACCOUNT_BALANCE
self.net_worth = INITIAL_ACCOUNT_BALANCE
self.max_net_worth = INITIAL_ACCOUNT_BALANCE
self.shares_held = 0
self.cost_basis = 0
self.total_shares_sold = 0
self.total_sales_value = 0
# pass test dataset to environment
if new_df:
self.df = new_df
# Set the current step to a random point within the data frame
# self.current_step = random.randint(
# 0, len(self.df.loc[:, 'open'].values) - 6)
self.current_step = 0
return self._next_observation()
def render(self, mode='human'):
# Render the environment to the screen
profit = self.net_worth - INITIAL_ACCOUNT_BALANCE
print('-'*30)
print(f'Step: {self.current_step}')
print(f'Balance: {self.balance}')
print(f'Shares held: {self.shares_held} (Total sold: {self.total_shares_sold})')
print(f'Avg cost for held shares: {self.cost_basis} (Total sales value: {self.total_sales_value})')
print(f'Net worth: {self.net_worth} (Max net worth: {self.max_net_worth})')
print(f'Profit: {profit}')
return profit
# replay_memory.py
import random
import collections
import numpy as np
class ReplayMemory(object):
def __init__(self, max_size):
self.buffer = collections.deque(maxlen=max_size)
# 增加一条经验到经验池中
def append(self, exp):
self.buffer.append(exp)
# 从经验池中选取N条经验出来
def sample(self, batch_size):
mini_batch = random.sample(self.buffer, batch_size)
obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []
for experience in mini_batch:
s, a, r, s_p, done = experience
obs_batch.append(s)
action_batch.append(a)
reward_batch.append(r)
next_obs_batch.append(s_p)
done_batch.append(done)
return np.array(obs_batch).astype('float32'), \
np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')
def __len__(self):
return len(self.buffer)
# 训练一个episode
def run_episode(env, agent, rpm):
total_reward = 0
obs = env.reset()
step = 0
while True:
step += 1
action = agent.sample(obs) # 采样动作,所有动作都有概率被尝试到
next_obs, reward, done, _ = env.step(action)
rpm.append((obs, action, reward, next_obs, done))
# train model
if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
(batch_obs, batch_action, batch_reward, batch_next_obs,
batch_done) = rpm.sample(BATCH_SIZE)
train_loss = agent.learn(batch_obs, batch_action, batch_reward,
batch_next_obs,
batch_done) # s,a,r,s',done
total_reward += reward
obs = next_obs
if done :
break
#print(step,total_reward)
return total_reward
# 评估 agent, 跑 5 个episode,总reward求平均
def evaluate(env, agent, render=False):
eval_reward = []
for i in range(5):
obs = env.reset()
episode_reward = 0
while True:
action = agent.predict(obs) # 预测动作,只选最优动作
obs, reward, done, _ = env.step(action)
episode_reward += reward
if render:
env.render()
if done:
break
eval_reward.append(episode_reward)
return np.mean(eval_reward)
font = fm.FontProperties(fname='font/wqy-microhei.ttc')
# plt.rc('font', family='Source Han Sans CN')
plt.rcParams['axes.unicode_minus'] = False
# 创建环境
#env = gym.make('Pong-v0')
df = pd.read_csv('sh.600055.csv')
df = df.sort_values('date')
# The algorithms require a vectorized environment to run
env = StockTradingEnv(df)
# 创建环境
action_dim = env.action_space.shape[0]
obs_shape = env.observation_space.shape[0]
# 创建经验池
rpm = ReplayMemory(MEMORY_SIZE) # DQN的经验回放池
# 根据parl框架构建agent
######################################################################
######################################################################
#
# 4. 请参考课堂Demo,嵌套Model, DQN, Agent构建 agent
#
######################################################################
######################################################################
model = Model(act_dim=action_dim)
algorithm = DQN(model, act_dim=action_dim, gamma=GAMMA, lr=LEARNING_RATE)
agent = Agent(
algorithm,
obs_dim=obs_shape,
act_dim=action_dim,
e_greed=0.1, # 有一定概率随机选取动作,探索
e_greed_decrement=1e-6) # 随着训练逐步收敛,探索的程度慢慢降低
# 加载模型
# save_path = './dqn_model.ckpt'
# agent.restore(save_path)
# 先往经验池里存一些数据,避免最开始训练的时候样本丰富度不够
while len(rpm) < MEMORY_WARMUP_SIZE:
run_episode(env, agent, rpm)
max_episode = 500
# 开始训练
episode = 0
while episode < max_episode: # 训练max_episode个回合,test部分不计算入episode数量
# train part
for i in range(0, 1):
total_reward = run_episode(env, agent, rpm)
episode += 1
# test part
eval_reward = evaluate(env, agent, render=False) # render=True 查看显示效果
logger.info('episode:{} e_greed:{} test_reward:{}'.format(
episode, agent.e_greed, eval_reward))
# 训练结束,保存模型
save_path = './dqn_model.ckpt'
agent.save(save_path)