-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathutils.py
83 lines (66 loc) · 2.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Contains some functions that can be used with vgg to get tensors of layers and
compute gram matrices. Also contains some wrappers around OpenCV's image I/O
functions.
File author: Grant Watson
Date: Feb 2017
"""
import tensorflow as tf
import cv2
def imread(path):
"""Wrapper around cv2.imread. Switches channels to keep everything in RGB.
:param path:
String indicating path to image.
"""
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def imresize(img, scale):
"""Depending on if we scale the image up or down, we use an interpolation
technique as per OpenCV recommendation.
:param img:
3D numpy array of image.
:param scale:
float to scale image by in both axes.
"""
if scale > 1.0: # use cubic interpolation for upscale.
img = cv2.resize(img, None, interpolation=cv2.INTER_CUBIC,
fx=scale, fy=scale)
elif scale < 1.0: # area relation sampling for downscale.
img = cv2.resize(img, None, interpolation=cv2.INTER_AREA,
fx=scale, fy=scale)
return img
def imwrite(path, img):
"""Wrapper around cv2.imwrite. Switches it to RGB input convention.
:param path:
String indicating path to save image to.
:param img:
3D RGB numpy array of image.
"""
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(path, img)
def get_layers(layer_names):
"""Get tensors from default graph by name.
:param layer_names:
list of strings corresponding to names of tensors we want to extract.
"""
g = tf.get_default_graph()
layers = [g.get_tensor_by_name(name) for name in layer_names]
return layers
def get_grams(layer_names):
"""Get the style layer tensors from the VGG graph (presumed to be loaded into
default).
:param layer_names
Names of the layers in tf's default graph
"""
grams = []
style_layers = get_layers(layer_names)
for i, layer in enumerate(style_layers):
b, h, w, c = layer.get_shape().as_list()
num_elements = h*w*c
features_matrix = tf.reshape(layer, tf.stack([b, -1, c]))
gram_matrix = tf.matmul(features_matrix, features_matrix,
transpose_a=True)
gram_matrix = gram_matrix / tf.cast(num_elements, tf.float32)
grams.append(gram_matrix)
return grams