-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmetrics_test.py
104 lines (94 loc) · 3.66 KB
/
metrics_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for synthetic_protein_landscapes.metrics.py."""
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import pandas as pd
import metrics
class MetricsTest(parameterized.TestCase):
@parameterized.named_parameters(
dict(
testcase_name='2_clusters',
sequences=[[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]],
max_intra_cluster_hamming_distance=1,
expected_num_clusters=2,
),
dict(
testcase_name='3_clusters',
sequences=[[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0]],
max_intra_cluster_hamming_distance=1,
expected_num_clusters=3,
),
dict(
testcase_name='1_cluster',
sequences=[[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0]],
max_intra_cluster_hamming_distance=2,
expected_num_clusters=1,
),
)
def test_num_clusters(self, sequences, max_intra_cluster_hamming_distance,
expected_num_clusters):
sequences = np.vstack(sequences)
pdist = metrics.pairwise_hamming_distance(sequences)
num_clusters = metrics.num_clusters(
pdist,
max_intra_cluster_hamming_distance=max_intra_cluster_hamming_distance)
self.assertEqual(num_clusters, expected_num_clusters)
@parameterized.named_parameters(
dict(
testcase_name='1_cluster',
sequences=[[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]],
fitnesses=[0, 1, 1],
min_fitness=0.5,
max_intra_cluster_hamming_distance=1,
expected_num_clusters=1,
),
dict(
testcase_name='1_cluster_1_hit',
sequences=[[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]],
fitnesses=[0, 1, 0],
min_fitness=0.5,
max_intra_cluster_hamming_distance=1,
expected_num_clusters=1,
),
dict(
testcase_name='2_clusters',
sequences=[[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]],
fitnesses=[1, 1, 1],
min_fitness=0.5,
max_intra_cluster_hamming_distance=1,
expected_num_clusters=2,
),
dict(
testcase_name='no_clusters',
sequences=[[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]],
fitnesses=[0, 0, 0],
min_fitness=0.5,
max_intra_cluster_hamming_distance=1,
expected_num_clusters=0,
),
)
def test_num_clusters_for_min_fitness(self, sequences, fitnesses, min_fitness,
max_intra_cluster_hamming_distance,
expected_num_clusters):
df = pd.DataFrame(dict(sequence=sequences, fitness=fitnesses))
num_clusters = metrics.num_clusters_for_min_fitness(
df,
min_fitness=min_fitness,
max_intra_cluster_hamming_distance=max_intra_cluster_hamming_distance)
self.assertEqual(num_clusters, expected_num_clusters)
if __name__ == '__main__':
absltest.main()