-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpotts_model.py
362 lines (288 loc) · 13.2 KB
/
potts_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Potts models derived from direct coupling analysis (DCA)."""
import functools
from typing import Sequence
import numpy as np
import utils
def _get_shifted_weights(weight_matrix: np.ndarray,
wt_onehot_seq: np.ndarray,
epi_offset: float=0.0):
"""Add correction for epistatic offset.
Args:
weight_matrix: 4D ndarray of couplings.
wt_onehot_seq: One-hot encoded wildtype sequence.
epi_offset: Shift of the mean of the pairwise epistasis distribution
(F_{12}-F_{1}-F_{2}+F_{0}, computed relative to wildtype).
Returns:
ndarray view of copy of original weight matrix with shifted second order
interactions
"""
modified_weights = np.copy(weight_matrix)
# Epistasis offset, quadratic term. Outer product of one-hot WT sequence.
offset_mat = np.einsum('in,jm->ijnm', wt_onehot_seq, wt_onehot_seq)
# remove diagonal of offset
for i in range(offset_mat.shape[0]):
for m in range(offset_mat.shape[-1]):
offset_mat[i, i, m, m] = 0.0
modified_weights += -epi_offset * offset_mat
return np.asarray(modified_weights)
def _get_dist_cutoff_weights(weight_matrix,
distance_threshold):
"""Zeros nearby couplings given by `distance_threshold`.
Args:
weight_matrix: 4D ndarray of couplings.
distance_threshold: Distance cutoff for zeroing. 0 gives no adjustment, 1
gives 0 on the diagonal only, etc.
Returns:
ndarray view of copy of original weight matrix, with filtered near-diagonal
elements.
"""
modified_weights = np.copy(weight_matrix)
length = modified_weights.shape[0]
for i in range(length):
for j in range(length):
if abs(i - j) < distance_threshold:
modified_weights[i, j, :, :] = 0.0
return np.asarray(modified_weights)
def _get_shifted_fields(field_vec, single_mut_offset,
epi_offset, wt_onehot_seq):
"""Shifts fields to adjust single mutant effects and epistasis distributions.
Args:
field_vec: 2D ndarray of fields.
single_mut_offset: Shift of single mutant fitness effects.
epi_offset: Shift of epistasis distribution.
wt_onehot_seq: One-hot encoded wildtype sequence.
Returns:
ndarray view of copy of original field vectors, with single mutation effect
and epistasis shifts (relative to wildtype).
"""
shifted_fields = np.copy(field_vec)
single_mut_correction = single_mut_offset * wt_onehot_seq
# epistasis corrections
seq_len = wt_onehot_seq.shape[0] # sequence length
epi_correction = epi_offset * (seq_len - 1) * wt_onehot_seq
shifted_fields += epi_correction + single_mut_correction
return shifted_fields
def _slice_params_to_subsequence(field_vec,
weight_matrix, start_idx,
end_idx):
"""Crops a Potts model to use the position subset `start_idx`:`end_idx`.
The `weight_matrix` is LxLxAxA. Subsetting the positions but maintaining
the AxA interaction matrices returns a L'xL'xAxA tensor where
L' = end_idx - start_idx.
Args:
field_vec: LxA vector.
weight_matrix: LxLxAxA 4D tensor.
start_idx: index to start cropping from.
end_idx: index to stop cropping to.
Returns:
A tuple of (field, weight_matrix) arrays.
"""
# TODO update the field term to account for lost pairwise terms
sliced_field_vec = field_vec[start_idx:end_idx, :]
idx_range = range(start_idx, end_idx)
vocab_range = range(field_vec.shape[1])
sliced_weight_matrix = weight_matrix[np.ix_(idx_range, idx_range, vocab_range,
vocab_range)]
return sliced_field_vec, sliced_weight_matrix
def is_valid_couplings(couplings_llaa):
"""Checks that the input coupling tensor is symmetric."""
transposed_couplings_llaa = couplings_llaa.transpose(1, 0, 3, 2)
is_symmetric = np.allclose(couplings_llaa, transposed_couplings_llaa)
return is_symmetric
class PottsModel:
"""Black-box objective based on the negative energy of a Potts model.
Model assumes no insert gap states.
Tuning the Potts Model Objective:
Includes parameters to independently control the mean of single mutant
fitness effects as well as pairwise epistasis on double mutants
(defined as F_{12}-F_{1}-F_{2}+F_{0}),
with respect to wildtype.
The single mutant fitness distribution is shifted
by modifying the fields h with x_0, the one-hot representation of
the wildtype:
h' = h + single_mut_offset * x_0
The mean of the pairwise epistasis distribution is shifted by modifying the
couplings H and fields h by
H' = H + epi_offset * x_0 (x_0)^T
h' = h + epi_offset * L x_0
where L is the length of the sequence.
Afterwards, the distributions of the single mutant and pairwise epistasis
distributions are independently scaled by field_scale and coupling_scale
respectively by computing the energy E on a sequence x as
E = coupling_scale * 0.5*(x)^T H x + field_scale h^T x
+ (coupling_scale-field_scale) x_0^T H x
There is also an option to filter interactions of nearby residues.
"""
def __init__(self,
weight_matrix: np.ndarray,
field_vec: np.ndarray,
wt_seq: Sequence[int],
coupling_scale=1.0,
field_scale=1.0,
single_mut_offset=0.0,
epi_offset=0.0,
start_idx=0,
end_idx=None,
distance_threshold_for_nearby_residues=1,
center_fitness_to_wildtype=True):
"""Create an instance of this class.
Args:
weight_matrix: 4D ndarray, dimensions of L x L x A x A. Coupling matrix
for Potts model.
field_vec: 2D ndarray, L x A. Linear term in Potts model.
wt_seq: Wildtype sequence. Integer-encoded list.
coupling_scale: Scale factor for locally quadratic fitness changes (with
respect to wildtype).
field_scale: Scale factor for single-site mutant fitness effects (with
respect to wildtype).
single_mut_offset: Shift of single mutant fitness change about wildtype.
epi_offset: Shift of pairwise epistasis distribution (computed as
F_{12}-F_{1}-F_{2}+F_{0} for mutants 1 and 2 on background 0) around
wildtype sequence.
start_idx: Model restricted to sub-sequence [start_idx:end_idx].
end_idx: Model restricted to sub-sequence [start_idx:end_idx].
distance_threshold_for_nearby_residues: Coordinates i,j in the sequence
will be considered close to the diagonal if abs(i - j) < this. The
couplings between these residues will be set to zero.
center_fitness_to_wildtype: Whether to shift the output fitnesses such
that the fitness of the wildtype is 0.
"""
if not is_valid_couplings(weight_matrix):
raise ValueError('Couplings tensor must be symmetric.')
self._weight_matrix = weight_matrix
self._field_vec = np.asarray(field_vec)
self._vocab_size = self._field_vec.shape[1]
self._start_idx = start_idx
if end_idx is None:
self._end_idx = self._field_vec.shape[0]
else:
self._end_idx = end_idx
self._length = self._end_idx - self._start_idx
# Take slices of couplings.
self._field_vec, self._weight_matrix = _slice_params_to_subsequence(
self._field_vec, self._weight_matrix, self._start_idx, self._end_idx)
# Get WT sequence.
self._wt_seq = wt_seq
self._wt_seq = self._wt_seq[self._start_idx:self._end_idx]
# One-hot representation for downstream calculations.
self._wt_onehot_seq = utils.onehot(
[self._wt_seq], num_classes=self._vocab_size)[0]
# Modify field terms for offsets
self._field_vec = _get_shifted_fields(self._field_vec, single_mut_offset,
epi_offset, self._wt_onehot_seq)
self._weight_matrix = _get_shifted_weights(self._weight_matrix,
self._wt_onehot_seq, epi_offset)
self._weight_matrix = _get_dist_cutoff_weights(
self._weight_matrix, distance_threshold_for_nearby_residues)
# First derivative of quadratic term at wildtype.
# Result is seq_len x vocab_size (LxA).
self._quad_deriv = np.einsum('ijkl,jl->ik', self._weight_matrix,
self._wt_onehot_seq)
self._coupling_scale = coupling_scale
self._field_scale = field_scale
self._center_fitness_to_wildtype = center_fitness_to_wildtype
if center_fitness_to_wildtype:
wt_array = np.array([self.wildtype_sequence, ])
self._wildtype_fitness = -self._potts_energy(wt_array).item()
def evaluate(self, sequences):
fitnesses = -self._potts_energy(sequences)
if self._center_fitness_to_wildtype:
fitnesses -= self._wildtype_fitness
return fitnesses
@property
def vocab_size(self):
return self._vocab_size
@property
def length(self):
return self._length
@property
def wildtype_sequence(self):
return self._wt_seq
@property
def weight_matrix(self):
return self._weight_matrix
@property
def field_vec(self):
return self._field_vec
@property
def coupling_scale(self):
return self._coupling_scale
@property
def field_scale(self):
return self._field_scale
@property
@functools.lru_cache()
def epistasis_tensor(self):
"""Returns the epistasis tensor with respect to the wildtype sequence
Recall that epistasis is given by:
e_iAjB = H_iAjB - HiajB - HiAjb + Hiajb
"""
H = self.weight_matrix
L = H.shape[0]
A = H.shape[2]
epistasis_tensor = np.zeros_like(H)
# TODO(nthomas) vectorize
for i in range(L):
for j in range(L):
a = self.wildtype_sequence[i]
b = self.wildtype_sequence[j]
for alpha in range(A):
for beta in range(A):
epistasis_term = H[i, j, alpha, beta] - \
H[i, j, alpha, b] - H[i, j, a, beta] + H[i, j, a, b]
epistasis_tensor[i, j, alpha, beta] = epistasis_term
return epistasis_tensor
def _potts_energy(self, sequences):
"""Compute the Potts model energy."""
if len(np.asarray(sequences).shape) == 1: # single sequence
sequences = np.reshape(sequences, (1, -1))
# one-hot representation
onehot_seq = utils.onehot(sequences, num_classes=self._vocab_size)
# (i, j, k, l, b) = (residue1, residue2, amino1, amino2, batch)
linear_term = self._field_scale * np.einsum(
'ij,bij->b', self._field_vec, onehot_seq, optimize='optimal') + (
self._field_scale - self._coupling_scale) * np.einsum(
'ij,bij->b', self._quad_deriv, onehot_seq, optimize='optimal')
quadratic_term = self._coupling_scale * 0.5 * np.einsum(
'ijkl,bik,bjl->b',
self._weight_matrix,
onehot_seq,
onehot_seq,
optimize='optimal')
return linear_term + quadratic_term
def load_from_mogwai_npz(filepath, **init_kwargs):
"""Load a landscape from a Potts Model state dict dumped from Mogwai.
Args:
filepath: A path to a .npz file with the following fields: ['weight',
'bias', 'query_seq']. This file is assumed to be a saved state dict
from the package mogwai https://github.com/nickbhat/mogwai.
**init_kwargs: Kwargs passed to the PottsModel constructor.
Returns:
A PottsModel.
"""
with open(filepath, 'rb') as f:
state_dict = np.load(f)
# Mogwai computes logits with a forward pass, so we need to invert
# the couplings to get the expected energy computation
couplings = -1 * state_dict['weight']
bias = -1 * state_dict['bias']
wt_seq = state_dict['query_seq']
# Reshape the couplings from Mogwai. L, A, L, A -> L, L, A, A
couplings = np.moveaxis(couplings, [0, 1, 2, 3], [0, 2, 1, 3])
landscape = PottsModel(
weight_matrix=couplings, field_vec=bias, wt_seq=wt_seq, **init_kwargs)
return landscape