-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem1_result
44 lines (43 loc) · 1.48 KB
/
problem1_result
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
GLPSOL: GLPK LP/MIP Solver, v4.52
Parameter(s) specified in the command line:
--cpxlp /tmp/19132-pulp.lp -o /tmp/19132-pulp.sol
Reading problem data from '/tmp/19132-pulp.lp'...
36 rows, 32 columns, 92 non-zeros
32 integer variables, none of which are binary
123 lines were read
GLPK Integer Optimizer, v4.52
36 rows, 32 columns, 92 non-zeros
32 integer variables, none of which are binary
Preprocessing...
32 rows, 32 columns, 88 non-zeros
32 integer variables, all of which are binary
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 32
Solving LP relaxation...
GLPK Simplex Optimizer, v4.52
32 rows, 32 columns, 88 non-zeros
0: obj = 1.400000000e+01 infeas = 5.000e+00 (0)
* 3: obj = 1.400000000e+01 infeas = 0.000e+00 (0)
* 10: obj = 1.200000000e+01 infeas = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
+ 10: mip = not found yet >= -inf (1; 0)
+ 13: >>>>> 1.200000000e+01 >= 1.200000000e+01 0.0% (1; 0)
+ 13: mip = 1.200000000e+01 >= tree is empty 0.0% (0; 1)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (83240 bytes)
Writing MIP solution to `/tmp/19132-pulp.sol'...
Status: Optimal
Optimal cost: 12
f ((4, 5), 1) 1 : 1
f ((1, 3), 1) 1 : 1
f ((5, 4), 1) 1 : 1
f ((2, 4), 1) 2 : 1
f ((3, 1), 1) 2 : 1
f ((4, 2), 1) 2 : 1
f ((5, 3), 1) 2 : 1
f ((3, 5), 1) 2 : 1