-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy patheval_f1.py
82 lines (64 loc) · 3.33 KB
/
eval_f1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from __future__ import division
from __future__ import print_function
import time
import numpy as np
import sys
from utils import CWSEvaluator, bmes_to_words
def is_start(curr):
return curr[0] == "B" or curr[0] == "S"
def is_continue(curr):
return curr[0] == "M"
def is_background(curr):
return not is_start(curr) and not is_continue(curr)
def is_seg_start(curr, prev):
return (is_start(curr) and not is_continue(curr)) or (
is_continue(curr) and (prev is None or is_background(prev) or prev[1:] != curr[1:]))
def segment_eval(batches, predictions, labels_id_str_map, vocab_id_str_map, pad_width, start_end, logger,
extra_text=""):
if extra_text != "":
logger.info(extra_text)
def print_context(width, start, tok_list, pred_list, gold_list):
for offset in range(-width, width + 1):
idx = offset + start
if 0 <= idx < len(tok_list):
logger.info("%s\t%s\t%s" % (
vocab_id_str_map[tok_list[idx]], labels_id_str_map[pred_list[idx]],
labels_id_str_map[gold_list[idx]]))
logger.info()
prf = CWSEvaluator(labels_id_str_map)
# iterate over batches
for predictions, (dev_label_batch, dev_token_batch, _, _, dev_seq_len_batch, _, _) in zip(predictions, batches):
# iterate over examples in batch
for preds, labels, tokens, seq_lens in zip(predictions, dev_label_batch, dev_token_batch, dev_seq_len_batch):
start = pad_width
for seq_len in seq_lens:
predicted = preds[start:seq_len + start]
golds = labels[start:seq_len + start]
toks = tokens[start:seq_len + start]
prf.add_instance(predicted, golds)
start += seq_len + (2 if start_end else 1) * pad_width
prf = prf.result()
logger.info('{}\t{:04.2f}\t{:04.2f}\t{:04.2f}'.format('AVG', prf[0], prf[1], prf[2]))
return prf
def print_training_error(num_examples, start_time, epoch_losses, step, logger):
losses_str = ' '.join(["%5.5f"] * len(epoch_losses)) % tuple(map(lambda l: l / step, epoch_losses))
logger.info("%20d examples at %5.2f examples/sec. Error: %s" %
(num_examples, num_examples / (time.time() - start_time), losses_str))
sys.stdout.flush()
def output_predicted_to_file(out_filename, eval_batches, predictions, labels_id_str_map, vocab_id_str_map, pad_width):
with open(out_filename, 'w') as preds_file:
sentence_count = 0
for prediction, (
label_batch, token_batch, shape_batch, char_batch, seq_len_batch, tok_len_batch,
eval_mask_batch) in zip(
predictions, eval_batches):
for preds, labels, tokens, seq_lens in zip(prediction, label_batch, token_batch, seq_len_batch):
start = pad_width
for seq_len in seq_lens:
if seq_len != 0:
preds_nopad = list(map(lambda t: labels_id_str_map[t], preds[start:seq_len + start]))
tokens_nopad = list(map(lambda t: vocab_id_str_map[t], tokens[start:seq_len + start]))
start += pad_width + seq_len
words = bmes_to_words(tokens_nopad, preds_nopad)
print(" ".join(words), file=preds_file)
sentence_count += 1