-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathutils.py
executable file
·551 lines (459 loc) · 16.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# -*- coding:utf-8 -*-
import codecs
import errno
import os
import sys
import time
import numpy as np
UNK_TAG = "<UNK>"
NONE_TAG = "<NONE>"
START_TAG = "<START>"
END_TAG = "<STOP>"
PADDING_CHAR = "<*>"
POS_KEY = "POS"
MORPH_KEY = "MORPH"
class Progbar(object):
"""Progbar class copied from keras (https://github.com/fchollet/keras/)
Displays a progress bar.
Small edit : added strict arg to update
# Arguments
target: Total number of steps expected.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(self, target, width=30, verbose=1):
self.width = width
self.target = target
self.sum_values = {}
self.unique_values = []
self.start = time.time()
self.total_width = 0
self.seen_so_far = 0
self.verbose = verbose
def update(self, current, values=[], exact=[], strict=[]):
"""
Updates the progress bar.
# Arguments
current: Index of current step.
values: List of tuples (name, value_for_last_step).
The progress bar will display averages for these values.
exact: List of tuples (name, value_for_last_step).
The progress bar will display these values directly.
"""
for k, v in values:
if k not in self.sum_values:
self.sum_values[k] = [v * (current - self.seen_so_far), current - self.seen_so_far]
self.unique_values.append(k)
else:
self.sum_values[k][0] += v * (current - self.seen_so_far)
self.sum_values[k][1] += (current - self.seen_so_far)
for k, v in exact:
if k not in self.sum_values:
self.unique_values.append(k)
self.sum_values[k] = [v, 1]
for k, v in strict:
if k not in self.sum_values:
self.unique_values.append(k)
self.sum_values[k] = v
self.seen_so_far = current
now = time.time()
if self.verbose == 1:
prev_total_width = self.total_width
sys.stdout.write("\b" * prev_total_width)
sys.stdout.write("\r")
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%%%dd [' % (numdigits, numdigits)
bar = barstr % (current, self.target)
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.' * (self.width - prog_width))
bar += ']'
sys.stdout.write(bar)
self.total_width = len(bar)
if current:
time_per_unit = (now - self.start) / current
else:
time_per_unit = 0
eta = time_per_unit * (self.target - current)
info = ''
if current < self.target:
info += ' - ETA: %ds' % eta
else:
info += ' - %ds' % (now - self.start)
for k in self.unique_values:
if type(self.sum_values[k]) is list:
info += ' - %s: %.4f' % (k, self.sum_values[k][0] / max(1, self.sum_values[k][1]))
else:
info += ' - %s: %s' % (k, self.sum_values[k])
self.total_width += len(info)
if prev_total_width > self.total_width:
info += ((prev_total_width - self.total_width) * " ")
sys.stdout.write(info)
sys.stdout.flush()
if current >= self.target:
sys.stdout.write("\n")
if self.verbose == 2:
if current >= self.target:
info = '%ds' % (now - self.start)
for k in self.unique_values:
info += ' - %s: %.4f' % (k, self.sum_values[k][0] / max(1, self.sum_values[k][1]))
sys.stdout.write(info + "\n")
def add(self, n, values=[]):
self.update(self.seen_so_far + n, values)
class CSVLogger:
def __init__(self, filename, columns):
self.file = open(filename, "w")
self.columns = columns
self.file.write(','.join(columns) + "\n")
def add_column(self, data):
self.file.write(','.join([str(d) for d in data]) + "\n")
self.file.flush()
def close(self):
self.file.close()
def convert_instance(instance, i2w, i2t):
sent = [i2w[w] for w in instance.sentence]
tags = [i2t[t] for t in instance.tags]
return sent, tags
def read_pretrained_embeddings(filename, w2i):
word_to_embed = {}
with codecs.open(filename, "r", "utf-8") as f:
for line in f:
split = line.split()
if len(split) > 2:
word = split[0]
if word in w2i:
vec = split[1:]
word_to_embed[word] = vec
embedding_dim = len(next(iter(word_to_embed.values())))
out = np.random.uniform(-0.8, 0.8, (len(w2i), embedding_dim))
for word, embed in word_to_embed.items():
out[w2i[word]] = np.array(embed)
return out
def split_tagstring(s, uni_key=False, has_pos=False):
'''
Returns attribute-value mapping from UD-type CONLL field
@param uni_key: if toggled, returns attribute-value pairs as joined strings (with the '=')
'''
if has_pos:
s = s.split("\t")[1]
ret = [] if uni_key else {}
if "=" not in s: # incorrect format
return ret
for attval in s.split('|'):
attval = attval.strip()
if not uni_key:
a, v = attval.split('=')
ret[a] = v
else:
ret.append(attval)
return ret
def to_tag_strings(i2ts, tag_mapping, pos_separate_col=True):
senlen = len(tag_mapping)
key_value_strs = []
# j iterates along sentence, as we're building the string representations
# in the opposite orientation as the mapping
for j in range(senlen):
val = i2ts[tag_mapping[j]]
pos_str = val
key_value_strs.append(pos_str)
return key_value_strs
def bmes_to_words(chars, tags):
result = []
if len(chars) == 0:
return result
word = chars[0]
for c, t in zip(chars[1:], tags[1:]):
if t == 'B' or t == 'S':
result.append(word)
word = ''
word += c
if len(word) != 0:
result.append(word)
return result
def sortvals(dct):
return [v for (k, v) in sorted(dct.items())]
def get_processing_word(vocab_words=None, vocab_chars=None,
lowercase=False, chars=False):
"""
Args:
vocab: dict[word] = idx
Returns:
f("cat") = ([12, 4, 32], 12345)
= (list of char ids, word id)
"""
def f(word):
# 0. get chars of words
if vocab_chars is not None and chars == True:
char_ids = []
for char in word:
# ignore chars out of vocabulary
if char in vocab_chars:
char_ids += [vocab_chars[char]]
# 1. preprocess word
if lowercase:
word = word.lower()
if word.isdigit():
word = '0'
# 2. get id of word
if vocab_words is not None:
if word in vocab_words:
word = vocab_words[word]
else:
word = vocab_words[UNK_TAG]
# 3. return tuple char ids, word id
if vocab_chars is not None and chars == True:
return char_ids, word
else:
return word
return f
def get_chunk_type(tok, idx_to_tag):
"""
Args:
tok: id of token, ex 4
idx_to_tag: dictionary {4: "B-PER", ...}
Returns:
tuple: "B", "PER"
"""
tag_name = idx_to_tag[tok]
tag_class = tag_name.split('-')[0]
tag_type = tag_name.split('-')[-1]
return tag_class, tag_type
def get_chunks(seq, tags):
"""
Args:
seq: [4, 4, 0, 0, ...] sequence of labels
tags: dict["O"] = 4
Returns:
list of (chunk_type, chunk_start, chunk_end)
Example:
seq = [4, 5, 0, 3]
tags = {"B-PER": 4, "I-PER": 5, "B-LOC": 3}
result = [("PER", 0, 2), ("LOC", 3, 4)]
"""
default = tags["O"]
idx_to_tag = {idx: tag for tag, idx in tags.items()}
chunks = []
chunk_type, chunk_start = None, None
for i, tok in enumerate(seq):
# End of a chunk 1
if tok == default and chunk_type is not None:
# Add a chunk.
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = None, None
# End of a chunk + start of a chunk!
elif tok != default:
tok_chunk_class, tok_chunk_type = get_chunk_type(tok, idx_to_tag)
if chunk_type is None:
chunk_type, chunk_start = tok_chunk_type, i
elif tok_chunk_type != chunk_type or tok_chunk_class == "B":
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = tok_chunk_type, i
else:
pass
# end condition
if chunk_type is not None:
chunk = (chunk_type, chunk_start, len(seq))
chunks.append(chunk)
return chunks
class NEREvaluator:
def __init__(self, t2i):
self.correct_preds = 0.
self.total_preds = 0.
self.total_correct = 0.
self.t2i = t2i
def add_instance(self, gold_tags, out_tags):
# Evaluate PRF
lab_chunks = set(get_chunks(gold_tags, self.t2i))
lab_pred_chunks = set(get_chunks(out_tags, self.t2i))
self.correct_preds += len(lab_chunks & lab_pred_chunks)
self.total_preds += len(lab_pred_chunks)
self.total_correct += len(lab_chunks)
def result(self):
p = self.correct_preds / self.total_preds if self.correct_preds > 0 else 0
r = self.correct_preds / self.total_correct if self.correct_preds > 0 else 0
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
return p, r, f1
def bmes_tag(input_file, output_file):
with open(input_file) as input_data, open(output_file, 'w') as output_data:
for line in input_data:
word_list = line.strip().split()
for word in word_list:
if len(word) == 1:
output_data.write(word + "\tS\n")
else:
output_data.write(word[0] + "\tB\n")
for w in word[1:len(word) - 1]:
output_data.write(w + "\tM\n")
output_data.write(word[len(word) - 1] + "\tE\n")
output_data.write("\n")
def bmes_to_words(chars, tags):
result = []
if len(chars) == 0:
return result
word = chars[0]
for c, t in zip(chars[1:], tags[1:]):
if t == 'B' or t == 'S':
result.append(word)
word = ''
word += c
if len(word) != 0:
result.append(word)
return result
def bmes_to_index(tags):
"""
Args:
tags: [4, 4, 0, 0, ...] sequence of labels
Returns:
list of (chunk_type, chunk_start, chunk_end)
Example:
seq = [4, 5, 0, 3]
tags = {"B-PER": 4, "I-PER": 5, "B-LOC": 3}
result = [("PER", 0, 2), ("LOC", 3, 4)]
"""
result = []
if len(tags) == 0:
return result
word = (0, 0)
for i, t in enumerate(tags):
if i == 0:
word = (0, 0)
elif t == 'B' or t == 'S':
result.append(word)
word = (i, 0)
word = (word[0], word[1] + 1)
if word[1] != 0:
result.append(word)
return result
def combine_bmes_to_raw(bmes, raw):
with open(bmes) as input_data, open(raw, 'w') as output_data:
words = []
tags = []
for line in input_data:
cells = line.strip().split()
if len(cells) < 2:
sent = bmes_to_words(words, tags)
output_data.write(" ".join(sent))
output_data.write("\n")
words = []
tags = []
continue
words.append(cells[0])
tags.append(cells[2])
class CWSEvaluator:
def __init__(self, t2i):
self.correct_preds = 0.
self.total_preds = 0.
self.total_correct = 0.
self.i2t = {i: t for t, i in t2i.items()}
def add_instance(self, pred_tags, gold_tags):
pred_tags = [self.i2t[i] for i in pred_tags]
gold_tags = [self.i2t[i] for i in gold_tags]
# Evaluate PRF
lab_gold_chunks = set(bmes_to_index(gold_tags))
lab_pred_chunks = set(bmes_to_index(pred_tags))
self.correct_preds += len(lab_gold_chunks & lab_pred_chunks)
self.total_preds += len(lab_pred_chunks)
self.total_correct += len(lab_gold_chunks)
def result(self, percentage=True):
p = self.correct_preds / self.total_preds if self.correct_preds > 0 else 0
r = self.correct_preds / self.total_correct if self.correct_preds > 0 else 0
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
if percentage:
p *= 100
r *= 100
f1 *= 100
return p, r, f1
def evaluate_bmes(pred, gold):
performance = CWSEvaluator()
with open(pred) as pred_file, open(gold) as gold_file:
pred = []
gold = []
for pred_line, gold_line in zip(pred_file, gold_file):
if len(pred_line.strip()) == 0:
performance.add_instance(gold, pred)
pred_line.strip().split()
return performance.result()
def minibatches(data, minibatch_size):
"""
Args:
data: generator of instance
minibatch_size: (int)
Returns:
list of instance
"""
batch = []
for instance in data:
if len(batch) == minibatch_size:
yield batch
batch = []
if type(instance[0]) == tuple:
instance = zip(*instance)
batch += [instance]
if len(batch) != 0:
yield batch
def evaluate_file(file_name, t2i):
e = NEREvaluator(t2i)
with codecs.open(file_name, "r", "utf-8") as f:
pred_tags, gold_tags = [], []
for line in f:
line = line.strip()
if len(line) == 0 or line.startswith("-DOCSTART-"):
if len(pred_tags) != 0:
e.add_instance(gold_tags, pred_tags)
pred_tags, gold_tags = [], []
else:
cells = line.split("\t")
if len(cells) < 2:
print(line)
continue
pt = cells[1]
gt = cells[3]
if pt not in t2i or gt not in t2i:
print(line)
continue
pred_tags.append(t2i[pt])
gold_tags.append(t2i[gt])
print(e.result())
def append_tags(src, des, part):
with open('data/{}/raw/{}.txt'.format(src, part), encoding='utf-8') as input, open('data/{}/raw/{}.txt'.format(des, part),
'a', encoding='utf-8') as output:
for line in input:
line = line.strip()
if len(line) > 0:
output.write('<{}> {} </{}>'.format(src, line, src))
output.write('\n')
def is_dataset_tag(word):
return len(word) > 2 and word[0] == '<' and word[-1] == '>'
def to_id_list(w2i):
i2w = [None] * len(w2i)
for w, i in w2i.items():
i2w[i] = w
return i2w
def make_sure_path_exists(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
def restore_sentence(sentence):
if len(sentence) == 0 or type(sentence[0]) != tuple:
return sentence
return [w[1] for w in sentence]
# if __name__ == '__main__':
# make_joint_corpus(['pku', 'msr', 'as', 'cityu'], 'joint')
# processing_word = get_processing_word(lowercase=True)
# print processing_word('Hello你好')
# import collections
# Instance = collections.namedtuple("Instance", ["sentence", "tags"])
# dataset = cPickle.load(open("data/conll2003/build/dataset.pkl", "r"))
# w2i = dataset["w2i"]
# t2i = dataset["t2is"]["POS"]
# c2i = dataset["c2i"]
# evaluate_file("data/conll2003/build/log/testout.txt", t2i)