-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
executable file
·346 lines (276 loc) · 14.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import argparse
import numpy as np
import os
from data import build_dataset
from flow1d.flow1d import build_model
from loss import criterion
from evaluate import (validate_chairs, validate_sintel, validate_kitti,
create_kitti_submission, create_sintel_submission,
inference_on_dir,
)
from utils.logger import Logger
from utils import misc
def get_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints/tmp')
parser.add_argument('--eval', action='store_true')
# Dataset
parser.add_argument('--image_size', default=[368, 496], type=int, nargs='+')
parser.add_argument('--stage', default='chairs', type=str)
parser.add_argument('--max_flow', default=400, type=int)
parser.add_argument('--padding_factor', default=8, type=int)
parser.add_argument('--val_dataset', default='chairs', type=str, nargs='+')
# Create Sintel and KITTI submission
parser.add_argument('--submission', action='store_true',
help='Create submission')
parser.add_argument('--warm_start', action='store_true')
parser.add_argument('--output_path', default='output', type=str)
parser.add_argument('--save_vis_flow', action='store_true')
parser.add_argument('--no_save_flo', action='store_true')
# Inference on a directory
parser.add_argument('--inference_dir', default=None, type=str)
parser.add_argument('--dir_paired_data', action='store_true',
help='Paired data in a dir instead of a sequence')
parser.add_argument('--save_flo_flow', action='store_true')
# Training
parser.add_argument('--lr', default=4e-4, type=float)
parser.add_argument('--lr_warmup', default=0.05, type=float,
help='Percentage of lr warmup')
parser.add_argument('--batch_size', default=12, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--grad_clip', default=1.0, type=float)
parser.add_argument('--num_steps', default=100000, type=int)
parser.add_argument('--seed', default=326, type=int)
parser.add_argument('--summary_freq', default=100, type=int)
parser.add_argument('--val_freq', default=5000, type=int)
parser.add_argument('--save_ckpt_freq', default=50000, type=int)
parser.add_argument('--resume', default=None, type=str)
parser.add_argument('--no_resume_optimizer', action='store_true')
parser.add_argument('--no_latest_ckpt', action='store_true')
parser.add_argument('--save_latest_ckpt_freq', default=1000, type=int)
parser.add_argument('--freeze_bn', action='store_true')
parser.add_argument('--train_iters', default=12, type=int)
parser.add_argument('--val_iters', default=12, type=int)
# Flow1D
parser.add_argument('--downsample_factor', default=8, type=int)
parser.add_argument('--feature_channels', default=256, type=int)
parser.add_argument('--corr_radius', default=32, type=int)
parser.add_argument('--hidden_dim', default=128, type=int)
parser.add_argument('--context_dim', default=128, type=int)
parser.add_argument('--gamma', default=0.8, type=float,
help='Exponential weighting')
parser.add_argument('--mixed_precision', action='store_true')
# Distributed training
parser.add_argument('--local_rank', default=0, type=int)
# Misc
parser.add_argument('--count_time', action='store_true')
return parser
def main(args):
if not args.eval and not args.submission and args.inference_dir is None:
print('PyTorch version:', torch.__version__)
print(args)
misc.save_args(args)
misc.check_path(args.checkpoint_dir)
misc.save_command(args.checkpoint_dir)
misc.check_path(args.output_path)
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model
model = build_model(args).to(device)
if not args.eval:
print('Model definition:')
print(model)
if torch.cuda.device_count() > 1:
print('Use %d GPUs' % torch.cuda.device_count())
model = torch.nn.DataParallel(model)
model_without_ddp = model.module
else:
model_without_ddp = model
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Number of params:', num_params)
if not args.eval and not args.submission and args.inference_dir is None:
save_name = '%d_parameters' % num_params
open(os.path.join(args.checkpoint_dir, save_name), 'a').close()
# optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
start_epoch = 0
start_step = 0
# resume checkpoints
if args.resume:
print('Load checkpoint: %s' % args.resume)
checkpoint = torch.load(args.resume)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
model_without_ddp.load_state_dict(weights, strict=False)
if 'optimizer' in checkpoint and 'step' in checkpoint and 'epoch' in checkpoint and not \
args.no_resume_optimizer:
print('Load optimizer')
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
start_step = checkpoint['step']
print('start_epoch: %d, start_step: %d' % (start_epoch, start_step))
# evaluate
if args.eval:
if 'chairs' in args.val_dataset:
validate_chairs(model_without_ddp,
iters=args.val_iters,
)
elif 'sintel' in args.val_dataset:
validate_sintel(model_without_ddp,
iters=args.val_iters,
padding_factor=args.padding_factor,
count_time=args.count_time,
)
elif 'kitti' in args.val_dataset:
validate_kitti(model_without_ddp,
iters=args.val_iters,
padding_factor=args.padding_factor,
)
else:
raise ValueError(f'Dataset type {args.val_dataset} is not supported')
return
# create sintel and kitti submission
if args.submission:
if args.val_dataset[0] == 'sintel':
create_sintel_submission(model_without_ddp,
iters=args.val_iters,
warm_start=args.warm_start,
output_path=args.output_path,
padding_factor=args.padding_factor,
save_vis_flow=args.save_vis_flow,
no_save_flo=args.no_save_flo,
)
elif args.val_dataset[0] == 'kitti':
create_kitti_submission(model_without_ddp,
iters=args.val_iters,
output_path=args.output_path,
padding_factor=args.padding_factor,
save_vis_flow=args.save_vis_flow,
)
else:
raise ValueError(f'Not supported dataset for submission')
return
# inferece on a dir
if args.inference_dir is not None:
inference_on_dir(model_without_ddp,
inference_dir=args.inference_dir,
iters=args.val_iters,
warm_start=args.warm_start,
output_path=args.output_path,
padding_factor=args.padding_factor,
paired_data=args.dir_paired_data,
save_flo_flow=args.save_flo_flow,
)
return
# train datset
train_dataset = build_dataset(args)
print('Number of training images:', len(train_dataset))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True)
last_epoch = start_step if args.resume and not args.no_resume_optimizer else -1
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps + 10,
pct_start=args.lr_warmup, cycle_momentum=False,
anneal_strategy='linear',
last_epoch=last_epoch,
)
if args.local_rank == 0:
summary_writer = SummaryWriter(args.checkpoint_dir)
logger = Logger(lr_scheduler, summary_writer, args.summary_freq,
start_step=start_step)
total_steps = start_step
epoch = start_epoch
print('Start training')
while total_steps < args.num_steps:
model.train()
# freeze BN after pretraining on chairs
if args.freeze_bn:
model_without_ddp.freeze_bn()
print('Start epoch %d' % (epoch + 1))
for i, sample in enumerate(train_loader):
img1, img2, flow_gt, valid = [x.to(device) for x in sample]
flow_preds = model(img1, img2, iters=args.train_iters)[0]
loss, metrics = criterion(flow_preds, flow_gt, valid,
gamma=args.gamma,
max_flow=args.max_flow)
optimizer.zero_grad()
loss.backward()
# gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
lr_scheduler.step()
if args.local_rank == 0:
logger.push(metrics)
logger.add_image_summary(img1, img2, flow_preds, flow_gt)
total_steps += 1
if total_steps % args.save_ckpt_freq == 0 or total_steps == args.num_steps:
if args.local_rank == 0:
print('Save checkpoint at step: %d' % total_steps)
checkpoint_path = os.path.join(args.checkpoint_dir, 'step_%06d.pth' % total_steps)
torch.save({
'model': model_without_ddp.state_dict()
}, checkpoint_path)
if total_steps % args.save_latest_ckpt_freq == 0:
# Save lastest checkpoint after each epoch
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint_latest.pth')
if args.local_rank == 0:
print('Save latest checkpoint')
torch.save({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'step': total_steps,
'epoch': epoch,
}, checkpoint_path)
if total_steps % args.val_freq == 0:
if args.local_rank == 0:
print('Start validation')
val_results = {}
# Support validation on multiple datasets
if 'chairs' in args.val_dataset:
results_dict = validate_chairs(model_without_ddp,
iters=args.val_iters,
)
val_results.update(results_dict)
if 'sintel' in args.val_dataset:
results_dict = validate_sintel(model_without_ddp,
iters=args.val_iters,
padding_factor=args.padding_factor,
)
val_results.update(results_dict)
if 'kitti' in args.val_dataset:
results_dict = validate_kitti(model_without_ddp,
iters=args.val_iters,
padding_factor=args.padding_factor,
)
val_results.update(results_dict)
logger.write_dict(val_results)
# Save validation results
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt')
with open(val_file, 'a') as f:
f.write('step: %06d\t' % total_steps)
# order of metrics
metrics = ['chairs_epe', 'chairs_1px', 'clean_epe', 'clean_1px', 'final_epe', 'final_1px',
'kitti_epe', 'kitti_f1']
for metric in metrics:
if metric in val_results.keys():
f.write('%s: %.3f\t' % (metric, val_results[metric]))
f.write('\n')
model.train()
# freeze BN after pretraining on chairs
if args.freeze_bn:
model_without_ddp.freeze_bn()
if total_steps >= args.num_steps:
print('Training done')
return
epoch += 1
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
main(args)