-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLabeledContrastiveLoss.py
168 lines (139 loc) · 8.13 KB
/
LabeledContrastiveLoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Copyright (c) 2024 Idiap Research Institute
MIT License
@author: Sergio Burdisso ([email protected])
"""
import torch
import logging
from torch import Tensor
from typing import Iterable, Dict, Union
from accelerate import Accelerator
from sentence_transformers import util
from sentence_transformers import SentenceTransformer
from . import BaseContrastiveLoss
from ..datasets import SimilarityDatasetFromLabels
logger = logging.getLogger(__name__)
class LabeledContrastiveLoss(BaseContrastiveLoss):
def __init__(self, model: SentenceTransformer,
use_soft_labels: bool = False, temperature: float = .05,
soft_label_temperature: float = .35, soft_label_model: str = "multi-qa-mpnet-base-dot-v1",
is_symmetrical: bool = True,
accelerator: Accelerator = None,
use_contrastive_head: bool = True, use_abs: bool = False):
"""
Soft and Vanilla Supervised Contrastive loss as described in https://arxiv.org/abs/2410.18481.
Expects as input two texts and a label. In case of soft contrastive loss this label must be its index
as used in the label to index mapping in `compute_label_embeddings()`.
This is to avoid computing the label embeddings every time the loss is called.
).
Then, this loss reduces the distance for all sentences embeddings in the batch having the same label (index),
while increasing the distance among embeddings with different label.
Args:
model: SentenceTransformer model
use_soft_labels: Wheather to use soft semantic labels or not (i.e. soft-contrastive loss)
soft_label_temperature: Temperature parameter to scale the cosine similarities for the soft labels.
soft_label_model: SentenceTransformer model to use to get the embeddings of the labels.
temperature: Contrastive loss temperature parameter.
is_symmetrical: Wheather to consider the loss as symmetrical between anchor and target sentences.
accelerator: Optional Accelerator object to be used in `forward()` to gather batches across GPUs
use_contrastive_head: Wheather to use the contrastive head or not.
use_abs: Wheather to use the absolute value of the cosine similarity or not.
References:
* Paper: https://arxiv.org/abs/2410.18481
Inputs:
+-----------------------------------------------+------------------------------+
| Texts | Labels |
+===============================================+==============================+
| (anchor, positive/negative) pairs | integer (label index) |
+-----------------------------------------------+------------------------------+
Example:
::
from sentence_transformers import SentenceTransformer
from torch.utils.data import DataLoader
from spretrainer.datasets import SimilarityDatasetFromLabels
from spretrainer.losses import LabeledContrastiveLoss
# Our model
my_model = SentenceTransformer(...)
# Our supervised soft-contrastive loss
loss_model = LabeledContrastiveLoss(model=my_model,
use_soft_labels=True)
# Our input data
data = [["utterance-0", "label-0"],
["utterance-1", "label-1"],
...
["utterance-n", "label-n"]] # (utterance, label) paris
# Convert data to a Dataset object with InputExample()s as SentenceTransformer
dataset = SimilarityDatasetFromLabels(data,
labels_as_ix=True,
shuffle=True)
# We need to pre-computing label embedings for the soft-contrative loss
loss_model.compute_label_embeddings(dataset)
data_iterator = DataLoader(dataset, ...)
for _ in range(n_epochs):
loss_model.zero_grad()
loss_model.train()
for data in data_iterator:
tokenized_batch, labels = data
loss_value = loss_model(tokenized_batch, labels)
loss_value.backward()
optimizer.step()
"""
super(LabeledContrastiveLoss, self).__init__(model=model,
use_contrastive_head=use_contrastive_head)
logger.info(f"Initializing labeled-contrastive loss with {'soft' if use_soft_labels else 'hard'} labels")
if use_soft_labels:
logger.info(f" > Soft label temperature: {soft_label_temperature}")
logger.info(f" > label embedding model: {soft_label_model}")
self.accelerator = accelerator
self.symmetrical = is_symmetrical
self.use_abs = use_abs
self.use_soft_labels = use_soft_labels
self.label2embedding = None
self.temperature = temperature
self.soft_label_temperature = temperature if soft_label_temperature is None else soft_label_temperature
self.soft_label_model = soft_label_model
self.similarity_fct = util.cos_sim
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
self.softmax = torch.nn.Softmax()
def compute_label_embeddings(self, dataset: SimilarityDatasetFromLabels):
if self.use_soft_labels:
if dataset.ix2label[0].isdigit():
# if labels are numbers makes no sense to use label embeddings...
self.use_soft_labels = False
else:
self.label2embedding = SentenceTransformer(self.soft_label_model).encode(dataset.ix2label,
convert_to_numpy=False,
convert_to_tensor=True).detach().to("cpu")
def forward(self, sentence_features: Iterable[Union[Dict[str, Tensor], Tensor]], labels: Tensor):
reps = [self.model(sentence_feature)
if isinstance(sentence_feature, (dict, Dict))
else sentence_feature
for sentence_feature in sentence_features]
anchors, positives, labels = self.gather_batches_across_processes(reps[0], reps[1], labels)
if self.use_abs:
scores = self.similarity_fct(anchors, positives).abs() / self.temperature
else:
scores = self.similarity_fct(anchors, positives) / self.temperature
if self.use_soft_labels:
# TODO: if embeddings are not pre-cached, compute them on the fly and cache them as they appear
# if self.label2embedding is None...
if isinstance(self.label2embedding, dict):
emb_size = next(self.label2embedding.values()).shape[1]
else:
emb_size = self.label2embedding.shape[1]
label_embs = torch.zeros([labels.shape[0], emb_size])
for label in torch.unique(labels):
label_embs[torch.where(labels == label)] = self.label2embedding[label]
# TODO: compute label similarity only once in compute_label_embeddings()
# then use the already computed values to build the ´labels_sim´ matrix
labels_sim = util.cos_sim(label_embs, label_embs) / self.soft_label_temperature
targets = torch.nn.functional.softmax(labels_sim, dim=1).to(scores.get_device())
else:
targets = torch.zeros_like(scores)
for ix, label in enumerate(labels):
targets[ix][torch.where(labels == label)[0]] = 1
targets = targets / targets.sum(1).view(-1, 1)
loss = self.cross_entropy_loss(scores, targets)
if self.symmetrical:
loss = (loss + self.cross_entropy_loss(scores.transpose(0, 1), targets)) / 2
return self.accelerator.num_processes * loss