diff --git a/.nojekyll b/.nojekyll index bdafbde2..02e8695f 100644 --- a/.nojekyll +++ b/.nojekyll @@ -1 +1 @@ -2d16b386 \ No newline at end of file +f6a17f8b \ No newline at end of file diff --git a/_tex/index.tex b/_tex/index.tex index 8cd047f0..9c5b2056 100644 --- a/_tex/index.tex +++ b/_tex/index.tex @@ -239,7 +239,7 @@ \subsection{Introduction}\label{sec-intro} Tools and PDK are integrated in the \textbf{IIC-OSIC-TOOLS} Docker image, which will be used during the coursework. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] All course material is made publicly available on GitHub and shared under the Apache-2.0 license. @@ -348,7 +348,7 @@ \subsubsection{Integrated IC Design Environment \href{https://github.com/iic-jku/IIC-OSIC-TOOLS}{IIC-OSIC-TOOLS GitHub page}. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Tip}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Tip}, bottomrule=.15mm, toptitle=1mm, colback=white] Please make sure to receive information about your personal VM access ahead of the course start. @@ -359,7 +359,7 @@ \subsubsection{Integrated IC Design Environment JKU students the IIC will host a VM on our compute cluster and provide personal login credentials. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] In this course, we assume that students have a basic knowledge of Linux and how to operate it using the terminal. If you are not yet familiar @@ -398,7 +398,7 @@ \subsubsection{The Metal-Oxide-Semiconductor Field-Effect-Transistor source, and then the bulk terminal is not shown to declutter the schematics. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] Strictly speaking is the drain-source current of a MOSFET controlled by the voltage between gate and bulk and the voltage between drain and @@ -502,7 +502,7 @@ \subsubsection{The Metal-Oxide-Semiconductor Field-Effect-Transistor \href{https://en.wikipedia.org/wiki/Miller_effect}{Miller effect}. In hand calculations we will often set \(C_\mathrm{GD}= 0\). -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] The bulk connection in Figure~\ref{fig-mosfet-large-signal-model} seems floating as we only consider it a control terminal, where the potential @@ -536,7 +536,7 @@ \subsubsection{The Metal-Oxide-Semiconductor Field-Effect-Transistor first simple dc sweeps of various voltages and currents will be done. But before that, please look at the import note below! -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-important-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-important-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-important-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-important-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, toptitle=1mm, colback=white] Throughout this material, we will stick to the following notations: @@ -579,7 +579,7 @@ \subsubsection{The Metal-Oxide-Semiconductor Field-Effect-Transistor \end{figure}% -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, toptitle=1mm, colback=white] Please try to execute the following steps and answer these questions: @@ -707,7 +707,7 @@ \subsubsection{The Metal-Oxide-Semiconductor Field-Effect-Transistor triode operation; \(g_\mathrm{d0}\) is equal to \(g_\mathrm{m}\) in saturation and \(g_\mathrm{ds}\) in triode). -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] Sometimes we will refer to different operating modes of the MOSFET like ``saturation'' or ``triode''. Generally speaking, when the drain-source @@ -727,7 +727,7 @@ \subsubsection{The Metal-Oxide-Semiconductor Field-Effect-Transistor Figure~\ref{fig-mosfet-small-signal-model} can be investigated and estimated using circuit simulation. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, toptitle=1mm, colback=white] Please try to execute the following steps and answer the following questions: @@ -809,7 +809,7 @@ \subsection{Transistor Sizing Using gm/ID the overdrive voltage, which are interesting from a theoretical viewpoint, but bear little practical use. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] One of the many simplifactions of the square-law model is that the mobility of the charge carriers is assumed constant (it is not). @@ -911,7 +911,7 @@ \subsubsection{NMOS Characterization}\label{sec-techsweep-nmos} current possible (ideally zero), as we always design for minimum power consumption. Thus, a high \(g_\mathrm{m}/I_\mathrm{D}\) ratio is good. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] Designing for minimum power consumption is pretty much always mandated. For battery-operated equipment it is a paramount requirement, but also @@ -948,7 +948,7 @@ \subsubsection{NMOS Characterization}\label{sec-techsweep-nmos} }\end{equation} with \(V_\mathrm{th}\) the threshold voltage and \(V_\mathrm{od}\) the so-called ``overdrive voltage.'' -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] Why are we so often using \(300\,\text{K}\) for a typical condition? As this corresponds to roughly \(27^{\circ}\text{C}\), this accounts for @@ -1047,7 +1047,7 @@ \subsubsection{NMOS Characterization}\label{sec-techsweep-nmos} \href{https://en.wikipedia.org/wiki/Johnson–Nyquist_noise}{quantum effects} start to kick in. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] We usually leave the \(\Delta f\) away for a shorter notation, so we write \(\overline{V_\mathrm{n}^2}\) when we actually mean @@ -1104,7 +1104,7 @@ \subsubsection{NMOS Characterization}\label{sec-techsweep-nmos} have a trade-off between flicker-noise performance and MOSFET speed, and this can have dramatic consequences for high-speed circuits. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] The physical origin of flicker noise is the crystal interface between silicon (Si) and the silicondioxide (SiO\textsubscript{2}). Since these @@ -1131,7 +1131,7 @@ \subsubsection{PMOS Characterization}\label{sec-techsweep-pmos} In the following, we have the same plots as discussed in Section~\ref{sec-techsweep-nmos}, but now for the PMOS. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] In all PMOS plots we plot positive values for voltages and currents, to have compatible plots to the NMOS. Of course, in a PMOS, voltages and @@ -1166,7 +1166,7 @@ \subsubsection{PMOS Characterization}\label{sec-techsweep-pmos} for the PMOS. We can not use these values for our circuit sizing, so we will use the respective NMOS plots also for the PMOS. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-important-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-important-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-important-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-important-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, toptitle=1mm, colback=white] This example shows how important it is to benchmark the device models when starting to use a new technology. Modelling artifacts like the one @@ -1266,7 +1266,7 @@ \subsection{First Circuit: MOSFET Diode}\label{sec-mosfet-diode} This voltage can be used as a biasing voltage for other circuit parts, for example. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] It is important to realize that this configuration essentially employs a feedback loop for operation. The voltage at the drain of the MOSFET is @@ -1282,7 +1282,7 @@ \subsubsection{MOSFET Diode Sizing}\label{mosfet-diode-sizing} use the \(g_\mathrm{m}/I_\mathrm{D}\) methodology introduced in Section~\ref{sec-gmid-method}. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, toptitle=1mm, colback=white] Please build a MOSFET diode circuit in Xschem where you use an LV NMOS, set \(I_\mathrm{bias} = 20\,\mu\text{A}\), \(L = 0.13\,\mu\text{m}\), @@ -1308,7 +1308,7 @@ \subsubsection{MOSFET Diode Sizing}\label{mosfet-diode-sizing} Before continuing, please finish the previous exercise. Once you are done, compare with the below provided solution. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Solution}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Solution}, bottomrule=.15mm, toptitle=1mm, colback=white] \begin{enumerate} \def\labelenumi{\arabic{enumi}.} @@ -1415,7 +1415,7 @@ \subsubsection{MOSFET Diode Small-Signal \href{https://iic-jku.github.io/analog-circuit-design/index.qmd.html}{Article Notebook}} -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-note-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-note-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-note-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-note-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-note-color}{\faInfo}\hspace{0.5em}{Note}, bottomrule=.15mm, toptitle=1mm, colback=white] For small-signal analysis we would not need to declare one node as the ground potential. However, when doing so, and selecting the ground node @@ -1440,7 +1440,7 @@ \subsubsection{MOSFET Diode Small-Signal \(Z_\mathrm{diode} = 1 / g_\mathrm{m}\), which is an important result and should be memorized. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-important-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-important-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-important-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-important-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, toptitle=1mm, colback=white] In circuit analysis it is often algebraically easier to work with conductances instead of impedances, so please remember that Ohm's law @@ -1532,7 +1532,7 @@ \subsubsection{MOSFET Diode Stability method} (Middlebrook 1975) which is based on double injection, and we will use it for our loop simulations. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Middlebrook's Method}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Middlebrook's Method}, bottomrule=.15mm, toptitle=1mm, colback=white] When we want to do an open-loop gain analysis, we break the loop at one point by inserting (1) an ac voltage source, and (2) attach an ac @@ -1582,7 +1582,7 @@ \subsubsection{MOSFET Diode Stability \(H_\mathrm{ol}(s)\) by using Middlebrook's method and confirm our analysis above. -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, toptitle=1mm, colback=white] Please build a simulation testbench in Xschem to simulate the open-loop transfer function of the MOSFET diode. Confirm the dc gain and pole @@ -1698,14 +1698,14 @@ \subsubsection{MOSFET Diode Noise of ca. \(1.1\,\mathrm{V_{pp}}\), resulting in a dynamic range in this case of \(20 \log (1.58 \cdot 10^{-3} / 0.39) \approx -48\,\text{dB}\). -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-important-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-important-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-important-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-important-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-important-color}{\faExclamation}\hspace{0.5em}{Important}, bottomrule=.15mm, toptitle=1mm, colback=white] Large BW circuits can integrate noise over a wide bandwidth resulting in considerable rms noise. \end{tcolorbox} -\begin{tcolorbox}[enhanced jigsaw, opacityback=0, toptitle=1mm, left=2mm, colframe=quarto-callout-tip-color-frame, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, breakable, opacitybacktitle=0.6, coltitle=black, bottomtitle=1mm, toprule=.15mm, colbacktitle=quarto-callout-tip-color!10!white, titlerule=0mm, rightrule=.15mm, arc=.35mm, colback=white] +\begin{tcolorbox}[enhanced jigsaw, titlerule=0mm, breakable, colbacktitle=quarto-callout-tip-color!10!white, toprule=.15mm, coltitle=black, colframe=quarto-callout-tip-color-frame, arc=.35mm, left=2mm, rightrule=.15mm, opacitybacktitle=0.6, bottomtitle=1mm, opacityback=0, leftrule=.75mm, title=\textcolor{quarto-callout-tip-color}{\faLightbulb}\hspace{0.5em}{Exercise}, bottomrule=.15mm, toptitle=1mm, colback=white] Please build a simulation testbench in Xschem to simulate the noise performance of the MOSFET diode, and confirm the rms noise value that we diff --git a/index.html b/index.html index f12ab52f..9222f48c 100644 --- a/index.html +++ b/index.html @@ -1638,7 +1638,7 @@

Appendix: ngs }); -