-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
325 lines (236 loc) · 9.09 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
---
output: github_document
---
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
message = FALSE,
fig.path = "README-"
)
```
```{r, include = FALSE}
writeLines(capture.output(devtools::session_info()), "session_info.txt")
```
# hyperband in R6
This is a very generic R6 implementation of the hyperband algorithm for hyperparameter optimization (https://arxiv.org/pdf/1603.06560.pdf)
The project is not yet finished but can already be used on your own problems and should work with any other R package/algorithm as long as it is suitable for hyperband.
### Please check the vignette folder for a very in-depth explanation + exhaustive examples on how to use the package and in particular, how to exploit the R6 class system in order to combine hyperband with MBO.
```{r, echo = FALSE, warning = FALSE, message = FALSE}
#######################################
############## packages ###############
#######################################
library("R6")
library("devtools")
load_all()
library("mxnet")
library("mlr") # you might need to install mxnet branch of mlr: devtools::install_github("mlr-org/mlr", ref = "mxnet")
library("ggplot2")
library("gridExtra")
library("dplyr")
library("data.table")
####################################
## define the problem to optimize ##
####################################
# read mini_mnist (1/10 of actual mnist for faster evaluation, evenly distributed classes)
train = fread("mnist/train.csv", header = TRUE)
test = fread("mnist/test.csv", header = TRUE)
# Some operations to normalize features
mnist = as.data.frame(rbind(train, test))
mnist = mnist[sample(nrow(mnist)), ]
mnist[, 2:785] = lapply(mnist[, 2:785], function(x) x/255)
train.x = train[, -1]
train.x = t(train.x/255)
```
----
Let us use **hyperbandr** in order to tune the hyperparameters of a neural network on the famous MNIST data (LeCun & Cortes 2010).
To this, we use [mxnet](https://github.com/apache/incubator-mxnet/tree/master/R-package) and [mlr](https://github.com/mlr-org/mlr).
\vspace{10pt}
```{r, echo = FALSE}
plots = 64
visualize_this = sample(dim(train.x)[2], plots)
par(mfrow = c(8, plots/8), cex = 0.05)
for(i in 1:plots){
train_vis = train.x[1:784, visualize_this[i]]
train_mat = matrix(train_vis, nrow = 28, ncol = 28, byrow = TRUE)
train_mat = apply(train_mat, 2 , rev)
image(t(train_mat), axes = FALSE, col = grey(seq(from = 0, to = 1, length = 255)))
}
rm(train)
rm(train.x)
rm(test)
```
\vspace{10pt}
For convenience, we only use 1/10 of the original data.
\vspace{10pt}
```{r, echo = TRUE}
# We sample 2/3 of our data for training
train.set = sample(nrow(mnist), size = (2/3)*nrow(mnist))
# Another 1/6 will be used for validation during training
val.set = sample(setdiff(1:nrow(mnist), train.set), 1000)
# The remaining 1/6 will be stored for testing
test.set = setdiff(1:nrow(mnist), c(train.set, val.set))
# Since we use mlr, we define a classification task to encapsulate the data
task = makeClassifTask(data = mnist, target = "label")
# Finally, we define the problem list
problem = list(data = task, train = train.set, val = val.set, test = test.set)
```
\vspace{10pt}
At first we define a search space.
The ParamHelpers package provides an easy way to construct the latter one.
\vspace{10pt}
```{r, echo = TRUE, comment = NA}
library("ParamHelpers")
configSpace = makeParamSet(
makeDiscreteParam(id = "optimizer", values = c("sgd", "rmsprop", "adam", "adagrad")),
makeNumericParam(id = "learning.rate", lower = 0.001, upper = 0.1),
makeNumericParam(id = "wd", lower = 0, upper = 0.01),
makeNumericParam(id = "dropout.input", lower = 0, upper = 0.6),
makeNumericParam(id = "dropout.layer1", lower = 0, upper = 0.6),
makeNumericParam(id = "dropout.layer2", lower = 0, upper = 0.6),
makeNumericParam(id = "dropout.layer3", lower = 0, upper = 0.6),
makeLogicalParam(id = "batch.normalization1"),
makeLogicalParam(id = "batch.normalization2"),
makeLogicalParam(id = "batch.normalization3")
)
```
\vspace{10pt}
Now we need a function to sample configurations from our search space.
\vspace{10pt}
```{r, echo = TRUE}
sample.fun = function(par.set, n.configs, ...) {
# sample from the par.set and remove all NAs
lapply(sampleValues(par = par.set, n = n.configs), function(x) x[!is.na(x)])
}
```
\vspace{10pt}
.. as well as a function to initialize models ..
\vspace{10pt}
```{r, echo = TRUE}
init.fun = function(r, config, problem) {
lrn = makeLearner("classif.mxff",
# you may have to install mxnet gpu, else just set ctx = mx.cpu()
ctx = mx.gpu(),
# we define a small CNN architecture with two conv and two dense layers
# (the second dense layer is our output and will be created automatically by mlr)
layers = 3,
conv.layer1 = TRUE, conv.layer2 = TRUE,
conv.data.shape = c(28, 28),
num.layer1 = 8, num.layer2 = 16, num.layer3 = 64,
conv.kernel1 = c(3,3), conv.stride1 = c(1,1),
pool.kernel1 = c(2,2), pool.stride1 = c(2,2),
conv.kernel2 = c(3,3), conv.stride2 = c(1,1),
pool.kernel2 = c(2,2), pool.stride2 = c(2,2),
array.batch.size = 128,
# we initialize our model with r iterations
begin.round = 1, num.round = r,
# here we allocate the configuration from our sample function
par.vals = config
)
mod = train(learner = lrn, task = problem$data, subset = problem$train)
return(mod)
}
```
\vspace{10pt}
After each step of successive halving, hyperbandr continues training the remaining model instead of training from scratch. This will greatly speed training time. Thus, we need a function to continue the training of our models ..
We're planning to add training from scratch as well. That might be necessary if the architecture memory requirements become to big.
\vspace{10pt}
```{r, echo = TRUE}
train.fun = function(mod, budget, problem) {
# we create a new learner and assign all parameters from our model
lrn = makeLearner("classif.mxff", ctx = mx.gpu(), par.vals = mod$learner$par.vals)
lrn = setHyperPars(lrn,
# in addition, we have to extract the weights and feed them into our new model
symbol = mod$learner.model$symbol,
arg.params = mod$learner.model$arg.params,
aux.params = mod$learner.model$aux.params,
begin.round = mod$learner$par.vals$begin.round + mod$learner$par.vals$num.round,
num.round = budget
)
mod = train(learner = lrn, task = problem$data, subset = problem$train)
return(mod)
}
```
\vspace{10pt}
.. and last but not least a function to measure the performance of our model at each step of successive halving:
\vspace{10pt}
```{r, echo = TRUE}
performance.fun = function(model, problem) {
# predict the validation data
pred = predict(model, task = problem$data, subset = problem$val)
# we choose accuracy as our performance measure
performance(pred, measures = acc)
}
```
\vspace{10pt}
Now we can call hyperband (with these hyperparameters, one run needs like 5 minutes on a GTX 1070):
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE}
hyperhyper = hyperband(
problem = problem,
max.resources = 81,
prop.discard = 3,
max.perf = TRUE,
id = "nnet",
par.set = configSpace,
sample.fun = sample.fun,
init.fun = init.fun,
train.fun = train.fun,
performance.fun = performance.fun)
```
\vspace{10pt}
With max.resources = 81 and prop.discard = 3, we obtain a total of 5 brackets:
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE}
length(hyperhyper)
```
\vspace{10pt}
We can inspect the first bracket ..
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE}
hyperhyper[[1]]
```
\vspace{10pt}
.. and for instance check it's performance by calling the getPerformance() method:
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE}
hyperhyper[[1]]$getPerformances()
```
\vspace{10pt}
We can also inspect the architecture of the best model of bracket 1:
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE}
hyperhyper[[1]]$models[[1]]$model
```
\vspace{10pt}
Let's see which bracket yielded the best performance:
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE}
lapply(hyperhyper, function(x) x$getPerformances())
```
\vspace{10pt}
We can call the hyperVis function to visualize all brackets:
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE, warning = FALSE, message = FALSE}
hyperVis(hyperhyper, perfLimits = c(0, 1))
```
\vspace{10pt}
Now we use the best model and predict test data:
\vspace{10pt}
```{r, echo = TRUE, eval = TRUE}
best.mod.index = which.max(unlist(lapply(hyperhyper, function(x) x$getPerformances())))
best.mod = hyperhyper[[best.mod.index]]$models[[1]]$model
performance(predict(object = best.mod, task = problem$data, subset = problem$test),
measures = acc)
```
\vspace{10pt}
### The example folder contains six detailed examples:
* neural networks:
+ hyperband to tune hyperparameters with mxnet and mlr
+ combine hyperband and MBO to tunehyperparameters with mxnet, mlr and mlrMBO
* gradient boosting:
+ hyperband to tune hyperparameters with xgboost and mlr
+ combine hyperband and MBO to tunehyperparameters with xgboost, mlr and mlrMBO
* single- and multi-objective functions:
+ hyperband to tune hyperparameters with smoof and mlr
+ combine hyperband and MBO to tune hyperparameters with smoof, mlr and mlrMBO