-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.R
55 lines (54 loc) · 1.55 KB
/
test.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
load_all()
# we need some packages
library("ggplot2")
library("smoof")
library("data.table")
library("dplyr")
# simple example for the branin function, a minimization problem
problem = makeBraninFunction()
opt = data.table(x1 = getGlobalOptimum(problem)$param$x1, x2 = getGlobalOptimum(problem)$param$x2)
# the three red dots are global minima
autoplot(problem) +
geom_point(data = opt, aes(x = x1, y = x2), shape = 20, colour = "red", size = 5)
# config space
configSpace = makeParamSet(
makeNumericParam(id = "x1", lower = -5, upper = 10.1))
# sample fun
sample.fun = function(par.set, n.configs, ...) {
sampleValues(par = par.set, n = n.configs)
}
# init fun
init.fun = function(r, config, problem) {
x1 = unname(unlist(config))
x2 = runif(1, 0, 15)
mod = c(x1, x2)
return(mod)
}
# train fun
train.fun = function(mod, budget, problem) {
for(i in seq_len(budget)) {
mod.new = c(mod[[1]], mod[[2]] + rnorm(1, sd = 3))
if(performance.fun(mod.new) < performance.fun(mod))
mod = mod.new
}
return(mod)
}
# performance fun
performance.fun = function(model, problem) {
problem(c(model[[1]], model[[2]]))
}
########### call hyperband ############
hyperhyper = hyperband(
problem = problem,
max.resources = 81,
prop.discard = 3,
max.perf = FALSE,
id = "branin",
init.fun = init.fun,
par.set = configSpace,
sample.fun = sample.fun,
train.fun = train.fun,
performance.fun = performance.fun)
# get performance and visualize brackets
lapply(hyperhyper, function(x) x$visPerformances())
lapply(hyperhyper, function(x) x$getPerformances())